Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Występowanie największych złóż węgla brunatnego w Polsce jest ściśle związane z granicami tektonicznymi i z występowaniem złóż soli kamiennej. Co łączy oba rodzaje złóż?
Go to article

Authors and Affiliations

Paweł Urbański
Jacek Kasiński
Download PDF Download RIS Download Bibtex

Abstract

The distribution of lignite deposits in Poland turns out to be closely related to tectonic boundaries and the occurrence of salt deposits. What mechanism underlies the connection between these elements?
Go to article

Authors and Affiliations

Paweł Urbański
1
ORCID: ORCID
Jacek Kasiński
1

  1. Polish Geological Institute - National Research Institute
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of experiments on a detection system used for detecting signals from a miniature, low-energy micro-electro-mechanical system (MEMS) X-ray source. The authors propose to use a detection based on luminescence phenomena occurring in luminophore and scintillators to record the visual signal on a CMOS/CCD detector. The main part of the article is a review of various materials of scintillators and luminophores which would be adequate to convert low-energy X-ray radiation (E < 25 keV – it is a range not typical for conventional X-ray systems) to visible light. Measurements obtained for different energies, exposure times, and different targets have been presented and analysed.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technologyul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview and a classification of X-ray detection methods. The main motivation for its preparation was the need to select a suitable and useful method for detecting signals from a currently developed miniature micro-electro-mechanical system (MEMS) X-ray source. The described methods were divided into passive and active ones, among which can be distinguished: chemical, luminescent, thermo-luminescent, gas ionization, semiconductor, and calorimetric methods. The advantages and drawbacks of each method were underlined, as well as their usefulness for the characterisation of the miniature MEMS X-ray source.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Poland is among the top ten countries in the world in terms of lignite resources (including reserves). With respect to lignite mining, its position is even higher at sixth in the world, fourth in Europe and second in the European Union (EU). The role of lignite in the Polish energy mix is crucial because ~27% of electricity was generated in lignite-fired power plants in 2022. However, there are countries in Europe where the dependence on lignite is much greater and currently in the range of 40–96%. B oth the national and EU climate energy policy assumes the abandonment of lignite as a source of ‘dirty’ electricity within the next two decades. This ambitious goal is achievable but it may be threatened by the geopolitical situation. However, after 2040–2044, a large number of lignite deposits will remain in Poland. The deposits are well recognized and the detailed geology is well documented, with the estimated reserves intended for exploitation amounting to 5.8 Gt. These deposits, like the five which are currently mined, are stratigraphically diverse and characterized by a complex geology, representing different genetic types. In the context of a coal-free energy policy in the EU, the problem of the legal protection of lignite deposits remains. Thus, the question arises of what is next for Polish lignite deposits. They may be managed in the coming decades by using improved unconventional methods, such as in situ or ex situ gasification. Lignite deposits will constitute a strategic reserve in the event of a deep energy crisis caused by an unstable geopolitical situation. Finally, we suggest the urgent introduction of more precise legal changes that would protect at least part of the lignite resources in Poland for future generations.
Go to article

Authors and Affiliations

Marek Widera
1
ORCID: ORCID
Paweł Urbański
2
ORCID: ORCID
Sławomir Mazurek
2
ORCID: ORCID
Wojciech Naworyta
3
ORCID: ORCID

  1. Institute of Geology, Adam Mickiewicz University, Poznań, Poland
  2. Polish Geological Institute – National Research Institute, Warszawa, Poland
  3. Mining Engineering and Occupational Safety, AGH University of Science and Technology, Kraków, Poland

This page uses 'cookies'. Learn more