Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Gear transmission errors are influenced by temperature especially in the aerospace field. A model is proposed to investigate the influence of temperature on cylindrical gear transmission errors based on the thermal network (TETN). The gear temperature field distribution model is established based on the thermal network method, and gear thermal deformation can be calculated along the gear meshing line. Regarding the gear single-flank rolling process, the variation of gear transmission errors under temperature is determined. In numerical calculations in MATLAB, the variation of gear transmission errors at 100°C compared to 20°C is –4.20 μm, which decreases almost linearly while the thermal expansion coefficient of the gear material increases. The simulation of the gear transmission errors variation of temperatures using the finite element method (FEM) were carried out in Workbench software under Ansys and the average difference of the TETN model results between calculations and FEM for different temperatures was 0.24 μm. Experiments were carried out on the gear tester in temperatures ranging from 0°C to 100°C, the TETN model results in calculations were compared with the results of the tester, and the average difference was –1.15 μm. The results show that the proposed TETN can be used as an algorithm to determine the variation of gear transmission errors under the influence of temperature.
Go to article

Authors and Affiliations

Jie Tang
1
Heng Guo
2
Hui Wan
2

  1. Faculty of Materials and Manufacturing, Beijing University of Technology, 100124 Beijing, China; Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100124 Beijing, China
  2. Faculty of Materials and Manufacturing, Beijing University of Technology, 100124 Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

Abstract NH4+ is an important N-source which regulates plant growth and development. However, the underlying mechanism of NH4+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic studies using the titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after NH4+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium signaling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4+ supply reduces IDD10 phosphorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4+ treatment. Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementation assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma membrane localization was not changed. Our analyses show that many proteins were phosphorylated or dephosphorylated by NH4+ that may provide important evidence for studying ammonium uptake and its mediated signaling by which rice growth and development are regulated.
Go to article

Authors and Affiliations

Xiao Feng Zhu
Wan Hui Cai
Jin Hee Jung
Yuan Hu Xuan

This page uses 'cookies'. Learn more