Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A smart control based on neural networks for multicellular converters has been developed and implemented. The approach is based on a behavioral description of the different converter operating modes. Each operating mode represents a well-defined configuration for which an operating zone satisfying given invariance conditions, depending on the capacitors’ voltages and the load current of the converter, is assigned. A control vector, whose components are the control signals to be applied to the converter switches is generated for each mode. Therefore, generating the control signals becomes a classification task of the different operating zones. For this purpose, a neural approach has been developed and implemented to control a 2-cell converter then extended to a 3-cell converter. The developed approach has been compared to super-twisting sliding mode algorithm. The obtained results demonstrate the approach effectiveness to provide an efficient and robust control of the load current and ensure the balancing of the capacitors voltages.
Go to article

Bibliography

[1] Benmansour K., Réalisation d’un banc d’essai pour la Commande et l’Observation des Convertisseurs Multicellulaires séries, Approche Hybride, PhD Thesis, Université de Cergy Pontoise, France (2009).
[2] Colak I., Kabalci E., Bayindira R., Review of multilevel voltage source inverter topologies and control schemes, Energy Conversion and Management Journal, vol. 52, iss. 2, pp. 1114–1128 (2011).
[3] Laidi K., Benmansour K., Ferdjouni A., Bouchhida O., Real-time implementation of an interconnected observer design for p-cells chopper, Archives of Electrical Engineering, vol. 59, no. 2, pp. 5–20 (2010).
[4] Meynard T., Foch H., Multilevel choppers for high voltage applications, European Power Electronics and Drives Journal, vol. 2, no. 1, pp. 45–50 (1992).
[5] Meynard T., Foch H., Electronic device for electrical energy conversion between a voltage source and a current source by means of controllable switching cells, European Patent 92/91 6336.8 (1992).
[6] Laidi K., Benmansour K., High Order Sliding Mode Controller of Mid-point Multi-cellular Converter, 2nd International Symposium on Friendly Energy and Applications, Newcastle Upon Tyne, pp. 493–498 (2012).
[7] Pinon D., Commande des Convertisseurs Multicellulaires par Mode de Glissement, PhD Thesis, INPT, Toulouse (2000).
[8] Skender M.R., Tlemçani A., A New Algorithme Observer of Higher Order Sliding Mode Applied to Serial Multicell Converter, Revue Roumaine des Sciences Techniques – Série Électrotechnique et Énergétique, vol. 61, no. 2, pp. 126–130 (2016).
[9] Zhang H., Dong H., Zhang B., Tong Wu, Changwen Chen, Research on beam supply control strategy based on sliding mode control, Archives of Electrical Engineering, vol. 69, no 2, pp. 349–364 (2020).
[10] Amet L., Ghanes M., Barbot J.P., Direct control based on sliding mode techniques for multicells serial chopper, American Control Conference, San Francisco, CA, USA (2011).
[11] Laamiri S., Ghanes M., Amet L., Santomenna.G, Direct Control Strategy for a Three Phase Eight-Level Flying-Capacitor Inverter, IFAC Journal of Systems and Control, vol. 50, iss. 1, pp. 15786–15791 (2017).
[12] Benzineb O., Taibi F., Benbouzid M.E., Boucherit M.S., Tadjine M., Multicell Converters Hybrid Sliding Mode Control, IFAC World Congress 2014, Cape Town, South Africa, pp. 11659–11666 (2014).
[13] Bensaid S., Bensaad K., Benrejeb M., On Two Control Strategies for Multicellular Converters, International Journal of Control, Energy and Electrical Engineering (CEEE), vol. 1, pp. 37–42 (2014).
[14] Djondine P., Barbot J.P., Ghanes M., Comparison of sliding mode and petri nets control for multicellular chopper, International Journal of Nonlinear Science, vol. 25, no. 2, pp. 67–75 (2018).
[15] Salinas S., Ghanes M., Barbot J.P., Escalante F., Amghar B., Modeling and Control Design Based on Petri Nets for Serial Multicellular Choppers, IEEE Transactions on Control Systems Technology, vol. 23, no. 1 (2015).
[16] Derugo P., Zychlewicz M., Reproduction of the control plane as a method of selection of settings for an adaptive fuzzy controller with Petri layer, Archives of Electrical Engineering, vol. 69, no. 3, pp. 609–624 (2020).
[17] Manon P., Valentin C.R., Gilles G., Optimal Control of Hybrid Dynamical Systems: Application in Process Engineering, Control Engineering Practice, pp. 133–149 (2002).
[18] Teel A.R., Bonivento C., Isidori A., Marconi L., Rossi C., Robust hybrid control systems: an overview of some recent results, Advances in Control Theory and Applications, Springer, vol. 353, pp. 279–302 (2007).

Go to article

Authors and Affiliations

Kamel Laidi
1
Ouahid Bouchhida
1
Mokhtar Nibouche
2
Khelifa Benmansour
1

  1. University of Medea, Algeria
  2. University of the West of England, United Kingdom

This page uses 'cookies'. Learn more