Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of defects in AME-series magnesium alloys produced by the high-pressure die-casting method are presented. The analyzed magnesium alloys contain about 5 wt% aluminum and 1-5 wt% rare earth elements introduced in the form of mischmetal. The casts were fabricated using a regular type cold-chamber high-pressure die-casting machine with a 3.2 MN locking force. The same surfaces of the casts were analyzed before and after the three-point bending test in order to determine the influence of the gas and shrinkage porosity on the deformation behavior of the alloys. The obtained results revealed that the most dangerous for the cast elements is the shrinkage porosity, especially stretched in the direction perpendicular to the that of the tensile stress action. Additionally, the influence of deformation twins arise in the dendrites of the primary α (Mg) solid solution and its interaction on the cracking process was described.
Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

In this paper, an experimental Mg-Al-RE-type magnesium alloy, named AEZ951, is presented. The chemical composition of the investigated alloy was ca. 9 wt% Al, 5 wt% RE (rare earth elements), 0.7 wt% Zn and 3 wt% Mn. The experimental material was gravity cast into a cold steel mould. Microstructure analyses were carried out by light microscopy, along with X-ray phase analysis and scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM + EDX). Detailed investigations disclosed the presence of primary dendrites of an α(Mg) solid solution and Al11RE3, ɣ and Al10RE2Mn7 intermetallic compounds in the alloy microstructure. The volume fraction of the Al11RE3 phase and α+ɣ eutectic was also presented. The hardness, impact strength, tensile strength as well as the yield strength of the alloy were examined in tests at room temperature. The examined experimental Mg-Al-RE-type magnesium alloy exhibited higher mechanical properties than the commercial AZ91 alloy (cast in the same conditions).


Go to article

Bibliography

[1] Lee, S.G., Patel, G.R., Gokhale, A.M., Sareeranganathan, A. & Horstemeyer, M.F. (2006). Quantitative fractographic analysis of variability in the tensile ductility of high-pressure die-cast AE44 Mg-alloy. Materials Science Engineering A. 427(1-2), 255-262. DOI: 10.1016/j.msea.2006.04.108.
[2] Braszczyńska-Malik, K. & Malik, M.A. (2020). Impact strength of AE-type alloys high pressure die castings. Archives of Foundry Engineering. 20(3), 5-8. DOI:10.24425/afe.2020.133321.
[3] Yang, Q., Guan, K., Li, B., Lv S., Meng F., Sun W., Zhang Y., Liu, X. & Meng, J. (2017). Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg–4Al–4RE–0.3Mn alloy. Materials Characterization. 132, 381-387. https://doi.org/10.1016/j.matchar.2017.08.032.
[4] Yang, Q., Lv, SH., Meng, FZ., Guan, K., Li, B.-S., Zhang, X-H., Zhang, J.-Q., Liu X.-J. & Meng. J. (2019). Detailed structures and formation mechanisms of well-known Al10RE2Mn7 phase in die-cast Mg–4Al–4RE–0.3Mn Alloy. Acta Metallurgica Sinica (English Letters). 32, 178-186. https://doi.org/10.1007/s40195-018-0819-0.
[5] Braszczyńska-Malik, K.N. & Grzybowska, A. (2016). Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys. Materials Characterization. 115, 14-22. https://doi.org/10.1016/j.matchar.2016.03.014
[6] Zhou, W., Li, Z., Li, D., Qin, M. & Zeng, X. (2022). Solidification microstructure evolution in LA42 Mg alloy under various cooling rates. Journal of Materials Science. 57, 11411-11429. https://doi.org/10.1007/s10853-022-07330-5
[7] Cai, H., Wang, Z., Liu, L., Li, Y., Xing, F. & Guo F. (2022). Formation sequence of compounds in AZ91-0.9Ce alloy and its role in fracture process. Advanced Engineering Materials. 24(7), 2101411. https://doi.org/10.1002/ adem.202101411.
[8] Braszczyńska-Malik, K.N. (2014). Some mechanical properties of experimental Mg-Al-Mn-RE alloy. Archives of Foundry Engineering. 14(1), 13-16. DOI: 10.2478/afe-2014-0003.
[9] Yang, Q., Guan, K., Li, B., Lv, S., Meng, F., Sun, W., Zhang, Y., Liu, X. & Meng, J. (2017). Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg–4Al–4RE–0.3Mn alloy. Materials Characterization. 132, 381-387. https://doi.org/10.1016/j.matchar.2017.08.032.
[10] Zhou, W., Li, Z., Li, D., Qin, M. & Zeng X. (2022). Solidification microstructure evolution in LA42 Mg alloy under various cooling rates. Journal of Materials Science. 57, 11411-11429. https://doi.org/10.1007/s10853-022-07330-5.
[11] Braszczyńska, K.N. (2003). Contribution of SiC particles to the formation of the structure of Mg-3 wt.% RE cast composites. Zeitschrift für Metallkunde. 94, 144-148. https://doi.org/10.3139/ijmr-2003-0028.
[12] Li, L., Li, D., Zeng, X., Luo, A.A., Hu, B., Sachdev, A. K., Gu, L. & Ding, W. (2020). Microstructural evolution of Mg-Al-RE alloy reinforced with alumina fibers. Journal of Magnesium Alloys. 8(3), 565-577. https://doi.org/10.1016/ j.jma.2019.07.012
[13] Braszczyńska-Malik, K. & Przełożyńska, E. (2017). The influence of Ti particles on microstructure and mechanical properties of Mg-5Al-5RE matrix alloy composite. Journal of Alloys and Compounds. 728, 600-606. https://doi.org/10.1016/j.jallcom.2017.08.177.
[14] Tang, B., Li, J., Wang, Y., Luo, H., Ye, J., Chen, X., Chen, X., Zheng, K. & Pan, F. (2022). Mechanical properties and microstructural characteristics of Ti/WE43 composites. Vacuum. 206, 111534. https://doi.org/10.1016/ j.vacuum.2022.111534
[15] Powder Diffraction File, PDF-4+, International Centre for Diffraction Data (ICDD), Pennsylvania, USA, 2014.
Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
1
ORCID: ORCID

  1. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of the Charpy impact test of AE-type magnesium alloys produced by the high pressure die casting method are presented. Three alloys with different weight fractions of rare earth elements (RE; e.g. 1, 3 and 5 wt%) and the same mass fraction of aluminium (5 wt%) were prepared. The casts were fabricated using a typical cold chamber high pressure die casting machine with a 3.8 MN locking force. Microstructural analyses were performed by means of a scanning electron microscope (SEM). The impact strength (IS) was determined using a Charpy V hammer with an impact energy equal to 150 J. The microstructure of the experimental alloys consisted of an -Mg solid solution and Al11RE3, Al10Ce2Mn7 and Al2RE intermetallic compounds. The obtained results show the significant influence of the rare earth elements to aluminium ratio on the impact strength of the investigated materials. Lower the RE/Al ratio in the chemical composition of the alloy results in a higher impact strength of the material.

Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
ORCID: ORCID
M.A. Malik

This page uses 'cookies'. Learn more