Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Borshchiv district, along with the western part of Podolia, was joined to Poland in the 14th century, to which it was to belong, intermittently, until the end of World War II. The purpose of the article is a semantic and structural analysis of the place names in this area, on the basis of which a linguistic picture emerges of the Borszczów district. The most numerous group of physiographic names describes its natural properties – the richness of its rivers and lakes, the animals living there, forested places, numerous undulations and plateaus. Also, ethnic names indirectly refer to the nature of the land itself whereas cultural names – equally numerous – describe the district as a result of the properties acquired due to human activity. The most recent layer being the ideological names created during communism. Older cultural names inform of settlement forms, defensive places, their state after numerous invasions, places related to spiritual, secular culture and the economy. Renewed and diminutive names depend on new settlements being built in the district. Among the names of places derived from personal names, the most numerous are possessive names, which are based on eastern or neutral names, just like with patronymics. The meaning of the name Szuparka remains unclear.

Go to article

Authors and Affiliations

Anna Czapla
Download PDF Download RIS Download Bibtex

Abstract

The research aim was to determine the long-term impact of the mine waste stored at the coal waste dump Hałda Ruda on the content of heavy metals in the bottom sediments of the Bytomka River. It is a watercourse flowing along this coal waste dump and has been under its influence for over fifty years. The research also attempted to determine the seasonality of changes (2 years) and mobility of selected elements.

The article presents total contents of Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the bottom sediments collected from the Bytomka River. It also focuses on the distribution of these elements in particular geochemical fractions determined with the Tessier's sequential chemical extraction procedure. Total element contents were determined with an EDPXRF (Energy Dispersive X-ray Fluorescence) technique. The extractants of particular Tessier's fractions were determined quantitatively with an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) spectrometer. The research results show that the stored waste significantly influences the contents of heavy metals in the Bytomka River bottom sediments. The lowest concentration of heavy metals was observed at the B1 spot (above the dump), while the highest one was measured at the B3 spot (below the dump).

Sequential chemical extraction of the bottom sediments indicates that the Zn content in the ion-exchange and carbonate fractions diminished within a year. Nevertheless, Zn bound to Fe and Mn oxides acted in the opposite way. Mn, Zn and Pb are the most dangerous elements from the viewpoint of environmental hazards, as their total concentrations were high. Moreover, their high contents were observed in the most mobile (ion-exchange and carbonate) fractions. Extremely toxic Cd was bound to the oxide fraction to the largest extent. Cu was mainly bound to the organic fraction while environmentally hazardous Cr was bound to the residual fraction.

Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Magdalena Jabłońska-Czapla
Sebastian Szopa
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was verification of the response of chamomile (Matricaria recutita (L.) Rauschert), peppermint (Mentha x piperita) lemon balm (Melissa officinalis L.), and sage (Salvia officinalis L.) on the elevated contents of inorganic As species in soils. The ability of herbs to accumulate arsenic was tested in pot experiment in which soils were contaminated by As(III) and As(V). The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid) and DMA (dimethylarsinic acid) ions were successfully separated in the Hamilton PRP-X100 column with high performance-liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The study examined total arsenic contents in soil and plants, as well as the mobility of the arsenic species from the soil into the studied plants. Peppermint demonstrated the highest arsenic concentration and phytoaccumulation among studied plants. The sequential chemical extraction showed that arsenic in the contaminated soil was mainly related to the oxide and organic-sulfide fractions. The results showed that the oxidized arsenic form had a greater ability to accumulate in herbs and was more readily absorbed from the substrate by plants. Research has shown that soil contaminated with As(III) or As(V) has different effects on the arsenic content in plants. The plant responses to strong environmental pollution varied and depended on their type and the arsenic species with which the soil was contaminated. In most cases it resulted in the appearance of the organic arsenic derivatives.

Go to article

Authors and Affiliations

Magdalena Jabłońska-Czapla
Rajmund Michalski
Katarzyna Nocoń
Katarzyna Grygoyć
Download PDF Download RIS Download Bibtex

Abstract

In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by

means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of

the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive

infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy,

using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of

composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese

cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ballon-disc

wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in

the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base

alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the

composite zone was five times lower than chromium white cast iron containing 20 % Cr.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
B. Grabowska
Ł. Szymański
P. Kurtyka
P. Czapla
Download PDF Download RIS Download Bibtex

Abstract

Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size.

Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate

that 80 % of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several

scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing

to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the

produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local

composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty

five times increase in wear resistance compared to manganese cast steel containing 18 % Mn.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
B. Grabowska
Ł. Szymański
P. Kurtyka
W. Maziarz
P. Czapla
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was optimization of antimony speciation methodology in soils in areas subjected to industrial anthropopressure from traffic, metallurgy and recycling of electrowaste (e-waste) sources. Antimony speciation was carried out using the hyphenated HPLC-ICP-MS (High-Performance Liquid Chromatography- Inductively Coupled Plasma-Mass Spectrometry) technique for the determination of antimony species ((Sb(III), Sb(V), SbMe3). The extraction and determination of antimony species in soil was optimized and validated, taking into account the matrix effects. The best results in antimony extraction from soils were obtained using a mixture of 100 mM citric acid and 20 mM Na2EDTA. Ions were successfully separated in 6 minutes on Hamilton PRPX100 column with 0.11 μg/L, 0.16 μg/L, 0.43 μg/L limit of detection for Sb(III), Sb(V), SbMe3, respectively. The oxidized antimony form (Sb(V)) predominated in the soil samples. The reduced antimony form (Sb(III)) was present only in a few samples, characterized by the lowest pH. The methyl derivative of antimony (SbMe3) was present in the samples with the lowest redox potential from the area around WEEE (Waste of Electrical and Electronic Equipment) treatment plant. The methodology of extraction and determination of three antimony species in soils was developed, achieving low limits of quantification and very good recovery. The research showed a large variation in antimony content in the soils impacted by type of industrial anthroporessure. The antimony content was the highest in the area of the WEEE treatment plant, indicating this type of industrial activity as a significant source of soil contamination with antimony.
Go to article

Bibliography

  1. Bagherifam, S., Brown, T.C., Wijayawardena, A. & Naidu, R. (2021). The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils, Environmental Pollution, 270, 1, pp. 116270. https://doi.org/10.1016/j.envpol.2020.116270
  2. Barker, A.J., Mayhew L.E., Douglas, T.A., Ilgen, A.G. & Trainor T.P. (2020). Lead and antimony speciation associated with the weathering of bullets in a historic shooting range in Alaska, Chemical Geology, 553, pp. 119797. https://doi.org/10.1016/j.chemgeo.2020.119797
  3. Barragan, J.A., Ponce de León, C., Alemán Castro, J. R., Peregrina-Lucano A., Gómez-Zamudio F. & Larios-Durán, E.R. (2020), Copper and Antimony Recovery from Electronic Waste by Hydrometallurgical and Electrochemical Techniques, ACS Omega, 5(21), pp. 12355–12363. doi: 10.1021/acsomega.0c01100
  4. Bi, X., Li, Z., Zhuang, X., Han, Z. & Yang, W. (2011). High levels of antimony in dust from e-waste recycling in southeastern China, Science of the Total Environment, 409, pp. 5126–5128. DOI:10.1016/j.scitotenv.2011.08.009
  5. De Gregori, I., Quiroz, W., Pinochet, H., Pannier, F. & Potin-Gautier, M. (2007). Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: Extraction procedures and stability of antimony species, Talanta, 73, pp. 458-465. DOI: 10.1016/j.talanta.2007.04.015
  6. Directive (EU) 2020/2184 of the European Parliament and of the council of 16 December 2020 on the quality of water intended for human consumption https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0040&from=EL
  7. Diquattro, S., Castidi, P., Ritch, S., Juhasz, L.J., Brunetti, G., Scheckel, K.G., Garau, G. & Lombi, E. (2021). Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation, Science of The Total Environment, 770, pp. 145354. https://doi.org/10.1016/j.scitotenv.2021.145354
  8. Filella, M., Belzile, N. & Chen, Y. (2002). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry, Earth-Science Reviews, 59, pp. 265–285. DOI: 10.1002/chin.200323280
  9. Ge, Z. & Wei, C. (2013). Simultanous Analysis of SbIII, SbV and TMSb by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry Detection: Application to Antimony Speciation in Soil Samples, Journal of Chromatographic Science, 51, pp. 391-399. https://doi.org/10.1093/chromsci/bms153
  10. Hammel, W., Debus, R. & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants, Chemosphere, 41, pp. 1791-1798. DOI: 10.1016/s0045-6535(00)00037-0
  11. He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A. & Shan, J. (2019). Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects, Journal of Environmental Sciences, 75, pp. 14–39. DOI: 10.1016/j.jes.2018.05.023
  12. Herath, I., Vithanage, M. & Bundschuh, J. (2017). Antimony as a global dilemma: geochemistry, mobility, fate and transport, Environmental Pollution, 223, pp. 545–559. DOI: 10.1016/j.envpol.2017.01.057
  13. Jabłońska-Czapla, M., Rachwał M., Grygoyć K. & Wawer M. (2022). Identification of the antimony sources in soils in areas subject to industrial anthropopressure using geophysical-geochemical methods, Chemosphere (under review).
  14. Jabłońska-Czapla, M., Szopa, S. & Rosik-Dulewska, Cz. (2014a). Impact of mining dump on the accumulation and mobility of metals in the Bytomka River sediments, Archives of Environmental Protection, 40, 2, pp. 3-19. DOI: 10.2478/aep-2014-0013
  15. Jabłońska-Czapla, M., Szopa, S., Grygoyć, K., Łyko, A. & Michalski, R. (2014b). Development and validation of HPLC–ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study, Talanta, 120, pp. 475-483. https://doi.org/10.1016/j.talanta.2013.11.092
  16. Ji, Y., Mestrot, A., Schulin, R. & Tandy, S. (2018). Uptake and transformations of methylated and inorganic antimony in plants, Frontiers in Plant Science, 9, 140, pp. 1-10. https://doi.org/10.3389/fpls.2018.00140
  17. Jia, X., Ma L., Liu, J., Liu, P., Yu, L., Zhou, J., Li, W., Zhou W. & Dong., Z. (2022). Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation, Journal of Hazardous Materials, 426, pp.127385. https://doi.org/10.1016/j.jhazmat.2021.127385
  18. Kozak, L. & Niedzielski, P. (2008). Determination of inorganic antimony species by hyphenated technique high performance liquid chromatography with hydride generation atomic absorption spectrometry detection, Archives of Environmental Protection, 34, 4, pp. 71-79.
  19. Kulka, E. & Gzyl, J. (2008). Assessment of lead and cadmium soil contamination in the vicinity of a non-ferrous metal smelter, Archives of Environmental Protection, 34, pp. 105-115.
  20. Loska, K., Wierchuła, D. & Korus, I. (2004). Antimony concentration in farming soil of southern Poland, Bulletin of Environmental Contamination and Toxicology, 72, pp. 858-865. DOI:10.1007/S00128-004-0323-2
  21. Martinez, A.M. & Escheberria, J. (2016).Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature, Wear, 348-349, pp. 27-42. DOI: 10.1016/j.wear.2015.11.014
  22. Muhammad Shahid, N., Khalid, S., Dumat, C., Pierart, A. & Niazi N.K. (2019). Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health, Applied Geochemistry, 106, pp. 45-59. https://doi.org/10.1016/j.apgeochem.2019.04.006
  23. Nishad, P.A. & Bhaskarapillai, A. (2021) Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies, Chemosphere, 277, pp. 130252. https://doi.org/10.1016/j.chemosphere.2021.130252
  24. Pasieczna, A. (2012). The content of antimony and bismuth in the soils of agricultural lands in Poland, Polish Journal of Agronomy, 10, pp. 21-29. (in Polish)
  25. Qi, C., Liu, G., Kang, Y., Lam, P.K.S. & Chou, C. (2011). Assessment and distribution of antimony in soils around three coal mines, Anhui China, Journal of the Air & Waste Management Association, 61, pp. 850-857. DOI: 10.3155/1047-3289.61.8.850
  26. Quan, S.X., Yan, B., Yang, F., Li, N., Xiao, X.M. & Fu, J.M. (2015). Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site, Environmental Science and Pollution Research, 22, pp. 1290-1298. DOI: 10.1007/s11356-014-3420-8
  27. Quiroz, W., Cortes, M., Astudillo, F., Bravo, M., Cereceda, F., Vidal, V. & Lobos, M.G. (2013). Antimony speciation in road dust and urban particulate matter in Valparaiso, Chile: Analytical and environmental considerations, Microchemical Journal, 10, pp. 266-272. DOI: 10.1016/j.microc.2013.04.006
  28. Rachwał, M., Wawer, M., Magiera T. & Steinnes, E. (2017). Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps. Environmental Science and Pollution Research, 24, pp. 26410–26423. DOI: 10.1007/s11356-017-0218-5
  29. Regulation of the Minister of the Environment of September 1, 2016 on the method of assessing pollution of the earth's surface, Journal of Laws No. 1395 (in Polish) https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395
  30. Warchulski, R., Gawęda, A., Kądziołka-Gaweł, M. & Szopa, K. (2015). Composition and element mobilization in pyrometallurgical slags from the Orzeł Biały smelting plant in the Bytom Piekary Śląskie area, Poland. Mineralogical Magazine, 79, 2, pp. 459–483. https://doi.org/10.1180/minmag.2015.079.2.21
  31. Wei, C., Ge, Z., Chu, W. & Feng, R. (2015). Speciation of antimony and arsenic in the soils and plants in an old antimony mine, Environmental and Experimental Botany, 109, pp. 31-39. https://doi.org/10.1016/j.envexpbot.2014.08.002
  32. Wu, T., Cui, X., Ata-Ul-Karim, S.T., Cui, P., Liu, C., Fan, T., Sun, Q., Gong, H., Zhou, D. & Wang Y. (2022). The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. Chemosphere, 297, pp. 134147. https://doi.org/10.1016/j.chemosphere.2022.134147
  33. Zhang, Z., Lu, Y., Li, H., Zhang, N., Cao, J., Qui, B. & Yang, Z. (2021). Simultaneous Separation of Sb(III) and Sb(V) by High Performance Liquid Chromatography (HPLC) – Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) with Application to Plants, Soils and Sediments, Analytical Letters, 54, 6, pp. 919-934. DOI:10.1080/00032719.2020.1788049
Go to article

Authors and Affiliations

Magdalena Jabłońska-Czapla
1
ORCID: ORCID
Katarzyna Grygoyć
1
ORCID: ORCID
Marzena Rachwał
1

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Packaging steels are thin gauge flat carbon steels coated with tin or chrome on both sides. They are very important raw materials for the production of steel packaging, which allow food to be stored safely and with an extended shelf life. The publication focuses on the production process of ETP and ECCS steel, as well as the problem of corrosion of steel packaging.

The topic of legislative changes that require the elimination of chromium (VI) compounds from the steel passivation process was also discussed. The packaging steel industry is currently facing the need to develop a new passivation technology. Leading packaging steel manufacturers in cooperation with varnish and paint suppliers have developed chromium (VI) free technologies by implementing chromium (III) compounds and titanium oxide technology.

Authors focus also on new trends and potential development directions for the packaging steel industry.

Go to article

Authors and Affiliations

M. Słowik
P. Cępa
K. Czapla
P. Żabiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this work, an electrically tunable long-period fiber grating (LPFG) coated with liquid crystal layer (LC) is presented. As a LC layer, a prototype low-birefringence 1550A LC mixture was chosen. As a LPFG host, two types of gratings were studied: the LPFGs based on a standard telecommunication fiber, produced by an electric arc technique with a period of 222 μm, and the LPFGs based on a boron co-doped fiber written by a UV technique with a period of 226.8 μm. The relatively short period of these gratings allowed exploiting unique sensing properties of the attenuation bands associated with modes close to the turn-around point. Experiments carried out showed that for the UV-induced LPFG with a LC layer, on the powered state the attenuation band could be offset from the attenuation band measured in the unpowered state by almost 130 nm. When the arc-induced LPFG was coated with the LC, the depth of the attenuation band could be efficiently controlled by applying an external E-field. Additionally, all experimental results obtained in this work were supported by the theoretical analysis based on a model developed with Optigrating v.4.2 software.

Go to article

Authors and Affiliations

A. Czapla
W.J. Bock
T.R. Woliński
P. Mikulic
R. Dąbrowski
E. Nowinowski-Kruszelnicki

This page uses 'cookies'. Learn more