Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC) is one of the promising techniques proposed for 5G systems. It allows multiple users with different channel coefficients to share the same (time/frequency) resources by allocating several levels of (power/code) to them. In this article, a design of a cooperative scheme for the uplink NOMA Wi-Fi transmission (according to IEEE 802.11 standards) is investigated. Various channel models are exploited to examine the system throughput. Convolutional coding in conformance to IEEE 802.11a/g is applied to evaluate the system performance. The simulation results have been addressed to give a clear picture of the performance of the investigated system.

Przejdź do artykułu

Autorzy i Afiliacje

Hind Salim Ghazi
Krzysztof Wesołowski

Abstrakt

Nonlinearities in optical fibers deteriorate system performances and become a major performancelimiting issue. This article aims to investigate the compensation of nonlinear distortions in optical communication systems based on different wavelength propagations over few-mode fiber (FMF). The study adopted Space Division Multiplexing (SDM) based on decision feedback equalizer (DFE). Various transmission wavelength of the FMF system is applied to mitigate the attenuation effect on the system. In this paper, different wavelengths (780, 850 and 1550 nm) are used in SDM. Extensive simulation is performed to assess the attenuation and Bit Error Rate (BER) in each case. The results show that the wavelength of 1550 nm produces higher power and less attenuation in the transmission. Furthermore, this wavelength produces the best distance with less BER compared to 780 nm and 850 nm wavelengths. Moreover, the validations show improvement in BER and eye diagram.

Przejdź do artykułu

Autorzy i Afiliacje

A. Al-Dawoodi
A. Fareed
T. Masuda
A. Ghazi
A.M. Fakhrudeen
S.A. Aljunid
S.Z.S. Idrus
A. Amphawan

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji