Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this work is to present an innovative method of numerical modeling of anchored piles system acting as a road protection against landslide, called the “2D/3D method”. Firstly, short description of the problem and “state of the art” review are included. An effective methodology of the design supported by the numerical analysis, solving the problem of interaction of a periodic system of piles and the unstable soil mass is presented, for which some detailed information about proposed numerical approach is given. The key idea of 2D/3D method is to join the pile with the 2D plane strain continuum by fictitious connectors of Winkler type with P-Y properties identified during the analysis of a subsidiary 3D problem. Practical example of usage of proposed approach to a real case of a road endangered by a landslide then protected by the piles system is presented. On the base of this example, a discussion about important design issues like internal forces in piles (mainly bending moments) and anchors (tensile forces) or overall stability of the soil-structure system is done.

Go to article

Authors and Affiliations

A. Urbański
M. Grodecki
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this work was to present a successful stabilization action of a building structure in an active landslide. Firstly, history of the case and a FEM simulation explaining ensuing situation are presented. Then different structural measures to stabilize the whole system are discussed. The structural solution of the problem (pile system reaching solid rocky zone) is presented in more detailed way. The estimation of forces acting on the structure, caused by an unstable soil mass, being crucial for the design of stabilizing structure is described.

Go to article

Authors and Affiliations

A. Urbański
M. Grodecki

This page uses 'cookies'. Learn more