Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 43
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Using the infra-red telcdetection methods for measurement of waler temperature it has been shown that hydrodynamic conditions which are a result of anthropopressiou, as the supplementary water mass movement, impose square differential temperature conditions of limnic ecosystem. The Rybnik dam reservoir shows, that effect of anthropopression expressed as the thermal pollutant and itrareservoir water movement is stronger than the natural limnological factors for the type and location of the reservoir. For such situation, when the mixion of the water mass caused by anthropopression is stronger than natural water movement, the author proposes the term "anthropomixion".
Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The results of the first (since 1939) investigation of Gliwice Channel have been presented. The concentrations of mobiles and constant forms of heavy metals in the bottom sediments have been given. The changes range was: for chromium 4.8-463.2 mg Cr/kg, for cadmium 0.6-18.2 mg Cd/kg, for lead 4-197 mg Pb/kg, for cupric 6-2152 mg Cu/kg, for manganese 33-1664 mg Mn/kg, for nickel 5-85.2 mg Ni/kg, for zinc 64-2244 mg Zn/kg, for iron 2080-94080 mg Fe/kg. The percent participation of stable forms of chromium decreases during longitude profile of canal whereas participation of mobile forms is increases. The stable and mobile forms of cadmium (Cd) increase. The concentrations of stable and mobile form of lead (Pb) decrease. The percent participation of stable forms of copper (Cu) is high (82- 100%). On total longitude of canal the participation of mobile forms of manganese (Mn) increases, but stable forms have advantage. For nickel (Ni) the stable forms are prevail too (form 55% to 81%). The participation of mobile forms of zinc (Zn) is 18% to 60%. The sharply outlined relationship between metals and organic matter concentrations indicates the significance in the metals transport processes from water to bottom sediments. Consequently, pollution of bottom sediments by heavy metals is the secondary result of organic substances of water enrichment. The relationships between total metals and iron (Fe) concentration points to the role of heavy metals stable amalgamations with amorphous ferric oxides. The cascade character and pulsatory water flow of Gliwice Channel makes the concentrations of heavy metals in bottom sediments successfully decrease in each canal section. At the same time, in each section of the canal gradual increase in metals concentration occurs and the maximum values for all determinated metals are present just before sluices closing sections. The best ecological effect, from the economical point of view, is obtained by bottom sediment removal on the about 1 km sectors over each of the sluice.
Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The article presents changes in the thickness and duration of the ice cover found in the restored anthropogenic water reservoir of Pławniowice. It also defines the role the ice cover plays in the formation of the reservoir limnological cycle. Characteristic and significant changeability of the ice cover thickness and duration was observed. The changes in the ice cover demonstrate that they are cyclical but not regular. The ice cover did not always form in the analyzed period. It happened twice, i.e. in 1988 and 2007 (a gap of 20 years). The longest lake freezing period lasted 119 days. Changes in the ice cover duration also show certain periodicity. The shortest periods occurred approx. every 7 years. Maximum values of the ice cover thickness ranged between 10 and 52 cm. There is a relation between the ice cover thickness and its duration period. The rate of increase in the ice cover thickness varied between 0.296 and 3.6 cm/d. The hypolimnion removal impact on the ice cover duration period and thickness was not observed. On the other hand, the ice cover duration period affects the spring circulation duration. Thus, it has an influence on the oxygen balance of the limnic ecosystem.

Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The restoration of the anthropogenic Pławniowice water reservoir with the hypolimnion withdrawal method (the Olszewski's tube) began in December 2003. The decision to restore the reservoir had been taken due to its terrible condition resulting from the hypertrophy, which had been indicated by the research from the years 1993–1998.

The following paper presents the results of eight-year-long research into the formation of oxygen conditions and restoration settings. They were compared with the data obtained from the research before the restoration. Positive changes were witnessed. It was showed that grasping the changes in oxygen conditions enables the comparison of oxygen profiles in the same months in subsequent years. The ratio of anoxic water layer thickness to the oxygenated layer thickness was suggested as a factor characterizing oxygen conditions. The area described with an izooxa in the xy coordinate system was suggested as a factor [O2 mg/m2] allowing researchers to understand and describe occurring changes. It was observed that the oxygen solved in water as a result of the restoration occurred in the whole water column in the third decade of July. The oxygen concentration in the hypolimnion gradually rose in May, June and July each year. It was showed that the improvement in oxygen conditions stemmed from progressing oligotrophy of the reservoir.

Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

In 1999 research on the range of pollution of fishes in antropogenie water ecosystem was carried out. These are the first results of investigation on heavy metals in fishes of this part of Upper Silesia region, especially in the dam-reservoir of the Kłodnica river. Concentration of Pb, Cd, Cu, Ni, Zn, Cr, Mn, in flesh and liver of some species of fish (Rutilus rutilus, Tinca tinca, Cyprinus carpio, Esox Lucius, Perea fluviatilis) in antropogenie ecosystem of water is given. The Dzierżno Duże dam-reservoir is artificial reservoir on the Kłodnica river, which flows through the Silesia region, the most industrialized region in Poland. The Coal-mine waters and other industrial pollution were collected in the sediments in this lake for years. The range of heavy metals concentration is higher than established standards for fish-food. The investigations will be continued.
Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

A trial to determine the atmospheric precipitants and their role as the element of pollutants budget in transport of pollutants into water ecosystems has been presented. Total dawnfall method were used with sedimentary funnels of 0.28 m2 . The pH, conductivity, ammonia, nitrites, nitrates, organic nitrogen, phosphates, organic carbon, chlorides, sulphates, calcium, magnesium and heavy metals (iron, zinc, lead and cadmium) were determined. The analysis results are similar to the results obtained at other sample points of Upper Silesia. The range of pollutant concentration changes indicate the objective factors for the analysis results dispersion. With the method apllied, only average values of concentration can be used for the evaluation of the chemical status of downfall waters and atmospheric air. The atmospheric precipitants thought underestimated are siginificant source for pollutants (nitrogen, phosphorus and heavy metals) introduced directly to the trophogenical zone of water ecosystem. In the case of the Kłodnica hydro-junction reservoirs, the loads of nitrogen and phosphorus from atmospheric precipitations are determined as "dangerous surface loading". The presence of considerable loads of magnesium in the precipitations indicates the possibility of chemical precipitation of polyphosphates from epilimnion zone, and are consequence the quicker transportation of phosphorus to the bottom sediments. It can activate the intra-reservoir enrichment process.
Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The results of the first limnological studies of the Kuźnica Warężyńska anthropogenic reservoir, by flooding the sand mine excavation, in 2005, are presented. Measurements of water temperature and the concentration of oxygen dissolved in water were made every month, from April to December, every 1 meter deep from the surface to the bottom (22m). Kuźnica Warężyńska anthropogenic lake was classified according to Olszewski and Patalas as dimictic, eumictic, stratified, stable, and extremely limnic. In terms of the share of the littoral zone in the total area, the reservoir is classified as grade II according to Dołgoff, where the pelagic zone is similar to the littoral zone. After 14 years of the reservoir's existence, during the summer stagnation period, the oxygen in the hypolimnion is completely depleted, from the 10th meter deep to the bottom, 22m. The analysis of the vertical distribution of the regression coefficient for the relationship between water temperature and the concentration of dissolved oxygen in water indicates the influence of the oxygen-free groundwater supplying the reservoir as a factor that may, in addition to the decomposition of organic matter, initiate anaerobic processes in the bottom water layer of the reservoir. When circulation ceases, the bottom eruption of oxygen-depleted groundwater is, during the summer and winter stagnation, a factor that shapes the anaerobic environment in the bottom layers of water early, initiating the internal enrichment process. Hydrological conditions, morphometry and thermal-oxygen relations of the Kuźnica Warężyńska reservoir are favorable for undertaking technical measures - changing the method of draining water from the surface to the bottom - to protect the quality of water resources.
Go to article

Bibliography

  1. Adrian, R., O’Reilly, C. M., Zagarese H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D.,Van Donk, E., Weyhenmeyer, G. A. & Winder, M., (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54, 6, 2, pp. 2283–2297. DOI: 10.4319/lo.2009.54.6_part_2.2283
  2. Anishchenko, O. V., Glushchenko, L. A., Dubowskaya, O. P., Zuev, I.V., Ageev, A.V. & Ivanov, E.A. (2015), Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains. Water Resources, vo. 42, Issue 5, pp. 670-682. DOI: 10.1134/S0097807815050036
  3. Biedka, P. (2014). Influence of the summer thermal stratification duration on the concentration of nutrients in lake waters, Annual Set The Environmental Protection, Rocznik Ochrona Środowiska, Vo. 16, pp. 470-485, ISSN 1506-218 (in Polish).
  4. Biedka, P. (2013) Influence of temperature changes on the course of processes related to eutrophication of lakes., Ekonomia i Środowisko, 2 (45), pp. 242-254. (in Polish).
  5. Bührer, H. & Ambühl, H. (2001). Lake Lucerne, Switzerland, a Long Term Study of 1961-1992. Aquatic Sciences 63: pp. 1-25. DOI: 10.1007/s00027-001-8043-8
  6. Jańczak, J. & Maślanka, W. (2006). Cases of occurrence of secondary metalimnia in some lakes of the Ełk Lakeland. Limnological Review, 6, pp. 123-128.
  7. Dobiesz, N. E. & Lester, N. P. (2009). Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. Journal of Great Lakes Research, 35, 3, pp. 371–384. DOI: 10.1016/j.jglr.2009.05.002
  8. Dołgoff, G.J. (1948). Water reservoir morphology as a factor of macrophyte overgrowth and water blooms. Leningrad 1948. (in Russian).|
  9. Dunalska, J., D. Górniak, B. Jaworska, E.E. & Gaiser, (2012). Effect of temperature on organic matter transformation in a different ambient nutrient availability. Ecological Engineering, 49, pp. 27-34. DOI: 10.1016/j.ecoleng.2012.08.023
  10. Dunalska, J. (2003). Impact of Limited Water Flow in a Pipeline on the Thermnal and Oxygen conditions in a Lake Restored by Hypolimnetic Withdrawal Method. Polish Journal of Environmental Studies, 12(4), pp. 409-415.
  11. Garbacz, J.K., Cieściński, J., Ciechański, J., Dąbkowski, R. & Cichowska, J. (2018). Terma land oxygen conditions in Charzykowskie Lake in 2014 – 2016. Journal of Polish Hyperbaric Medicine and Technology Society, 62(1), pp. 85-96, ISSN: 1 734-7009 eISSN: 2084-0535 DOI: 10.2478/phr-2018-0007 1(62) (in Polish).
  12. Skowron, R. (2008). Water thermal conditions during winter stagnation in the selected lakes in Poland. Limnological Review, 8 (3), pp. 119-128. DOI: 10.1515/limre-2017-0004
  13. Gierszewski, P., Miler, K. & Kaszubski, M. (2015). Features of the thermal and chemical stratification of the Ostrowite Lake water, in the year 2015. Journal of Education, Health and Sport. 5(12), pp. 217-229. ISSN 2391-8306. DOI 10.5281/zenodo.35354
  14. Kajak, Z. (1998) Hydrobiology – Limnology – inland water ecosystems. PWN Warszawa, 1998. (in Polish).
  15. Kintisch, E. (2015). Earth’s lakes are warming faster than its air: First ever global survey reveals summer lake temperatures rising at an alarming rate. Science, 350, 6267, 1449. DOI: 10.1126/science.350.6267.1449
  16. Kostecki, M. (2014). Restoration of the anthropogenic water reservoir Pławniowice, by hypolimnion withdrawal method – limnological study. (in Polish). Works&Studies Prace i Studia IPIŚ PAN Zabrze, No.84, pp. 1-221.
  17. Kostecki, M. (2014). Changes in oxygen conditions in a stratifying anthropogenic water reservoir as a result of restoration with hypolimnetic withdrawal method (on the basis of the Pławniowice reservoir example). Archives of Environmnetal Protection 2, pp. 53-63, DOI: 10.2478/aep-2014-0015
  18. Kostecki, M. (2013). Difference in ice cover in the anthropogenic reservoir of Pławniowice in the years 1986-2012. Archives of Environmnetal Protection, 4, pp. 3-14. DOI: 10.2478/aep-2013-0035
  19. Kostecki, M (2001). The limnological characteristic of the Pławniowice dam-reservoir (Upper Silesia, Poland) – Thermal and oxygen conditions after 23 years of exploitation. Archives of Environmental Protection, 27(2), pp. 97-124.
  20. Kostecki, M. (1994). Limnological research of the Middle Iraq lakes. Part III. Thermal an oxygen conditions and Basic indicators of water quality of the Tharthar Lake. Archiwum Ochrony Środowiska. 1-2, pp. 69-92, (in Polish).
  21. Kvambekk, Å. S. & Melvold, K. (2010). Long-term trends in water temperature and ice cover in the subalpine lake. Øvre Heimdalsvatn, and nearbylakes and rivers, hydrobiologia, 642(1), pp. 47–60. DOI: 10.1007/s10750-010-0158-2
  22. MacCallum, S. N. & Merchant, C. J. (2012). Surface water temperature observations of large lakes by optima estimation. Canadian Journal of Remote Sensing, 38(1), pp. 25–45. DOI: 10.5589/m12-010
  23. Marszelewski, W., Błoniarz, W. & Pestka, J. (2006). Seasonal changes in the concentrations of dissolved oxygen in the lakes of the “Bory Tucholskie” National Park. Limnological Review, 6, pp. 193-200. http://repozytorium.umk.pl/handle/item/298
  24. Sheela, A. Moses, Letha, Janaki, Sabu, Joseph, J. Justus, J. & Sheeja R. V. (2011). Influence of lake morfometry and water quality. Environmental Monitoring and Assessment, 182(1-4), pp. 443-454. DOI: 10.1007/s10661-011-1888-y
  25. Olszewski, P. (1959). Grades of intensity of wind impact on lakes, Zesz. Nauk. WSR Olsztyn, 4, pp. 111-132. (in Polish).
  26. Patalas, K. (1960) Thermal and oxygen conditions and transparency of water in 44 lakes of Węgorzewo District. Roczniki Nauk Rolniczych, Tom 77-B-1, pp. 105 – 216, (in Polish).
  27. Patalas, K. (1960): Mixing of water as a factor determining the intensity of matter flow in morphologically different lakes near Węgorzewo. Roczniki Nauk Rolniczych, 77(B-1), pp. 223-242, (in Polish).
  28. Pełechata, A., Pełechaty, M. & Pukacz, A. (2015). Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquatic Botany, 124, pp. 10–18. DOI: 10.1016/j.aquabot.2015.03.001
  29. Rzętała, M. (2008). Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopresion a case study of Upper Silesian Region. Wyd. Prace Naukowe Uniwersytetu Śląskiego, Nr 2643, Katowice 2008.(in Polish).
  30. Rzętała, M. (2007). Limnic water pollution of selected post-sand water reservoirs of Upper Silesian Region against a background of their economical use. Limnological Review 7(2), pp. 111-116.
  31. Skowron, R. & Piasecki, A. (2014): Water temperature and its diversity in the deepest lakes of the Tuchola Forest and the Kashubian and Brodnickie Lakelands. Bulletin of Geography – Physical Geography Series, 7, pp. 105–119. DOI: 10.2478/bgeo-2014-0005
  32. Stefanidis, K. & Papastergiadou, E. (2012). Relationship between lake morphometry, water quality, and aquatic macrophytes, in greek lakes. Fresenius Environmental Bulletin 21(10), pp. 3018 – 3026. http://www.psp-parlar.de
  33. Swinton, M. W., Eichler, L. W., Farrell, J. L. & Boylen, C. W. (2015). Evidence for water temperature increase in Lake George, NY: Impact on growing season duration and degree days. Lake and Reservoir Management, 31(3), pp. 241–253. DOI: 10.1080/10402381.2015.1067660
  34. Terasmaa, J. & Punning, J-M. (2006). Sedimentation dynamics in a small dimictic lake in northern Estonia. Proc. Estonian Acad. Sci. Biol. Ecol. 55(3), pp. 228 - 242.
  35. Zhang, Y. (2015). Effect of climate warming on lake thermal and dissolved oxygen stratifications:A review. Advances in Water Science, 26, 1, pp. 130–139. DOI: 10.14042/j.cnki.32.1309.2015.01.017
Go to article

Authors and Affiliations

Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

An attempt was made to determine the correlation between the granulometric structure of bottom sediments and the content of speciation forms of phosphorus and selected metals. Using the sedimentation method, the bottom sediments of a thermally contaminated dam reservoir were divided into fast and slow-draining fractions. Measurements of granulometric composition were made, determining the volume proportions of sediment particles in the range of 0.1 m to 650 m. Particle share sizes were determined in the size range: 0.1–50 m (F1), 50–100 m (F2), 100–200 m (F3), 200–400 m. (F4). The study showed that the content of speciation forms of phosphorus and selected metals remains related to the granulometric structure of bottom sediments. The content of organic matter in sediments is determined by the proportion of the smallest particles, from 0.1 to 50 μm, at the same time these particles most strongly aff ect the reduction conditions of sediments. According to Gilford›s correlation thresholds, there was no correlation between the proportion of sediment particles with dimensions of 0.1–50 μm and the concentration of speciation forms of phosphorus. For particles with dimensions of 50–100 μm, the strongest correlation was observed for the concentration of the EP fraction and for the WDP fraction (r2 = 0.4048, r2 = 0.3636). A strong correlation between the size of sediment particles and the concentration of speciated forms of phosphorus was noted for particles with dimensions of 100–200 μm and 200–400 μm. The coeffi cient of determination was for AAP, EP, WDP and RDP, respectively: 0.8292, 0.891, 0.7934, 0.47. The relationship between particles in the 0.1–50 m range and iron (Fe) concentration, R2 – 0.3792, aluminum (Al) R– 0.3208, and zinc (Zn) R2 – 0.4608, was classifi ed as medium. For particles in the 50–100 m range, a medium correlation with calcium (Ca) and magnesium (Mg) concentrations is apparent, R2 0.4443 and 0.3818, respectively. For particles 100–200 mm and 200–400 mm, an almost full correlation is noted for iron (Fe) R2 – 0.9835, aluminum (Al) R2 – 0.9878, calcium (Ca) R2 – 0. 824, very strong for manganese (Mn) R2 – 0.6817, and zinc (Zn) R2 – 0.7343. There is a very strong correlation between the concentration of the AAP fraction with the concentration of iron (Fe) R2 – 0.8694 and a strong correlation between the concentration of EP with the concentration of iron (Fe) R2 – 0.609. There is a strong correlation between the concentration of the AAP and EP fractions with the concentration of aluminum (Al) R2 – 0. 6253 and 0.8327. The concentration of AAP and EP fractions with the concentration of calcium (Ca) R2 – 0.5941 and 0.7576 remains in a strong relationship. The correlation between the concentration of RDP fractions and the concentration of magnesium (Mg) and manganese (Mn) remains in a medium relationship. The concentration of the EP fraction (Olsen-P) is in a strong relationship with the concentration of organic matter (R2 –.0.6763). No correlation was found between the concentration of the residuum form and the concentrations of organic matter, iron (Fe) and aluminum (Al). A medium correlation was found between the concentration of the residuum form and the concentration of calcium (Ca), magnesium (Mg), manganese (Mn) – R2 = 0.4206 and zinc (Zn).
Go to article

Bibliography

  1. Adiyiah, J., Acheampong, M. A., Ansa, E. D. O. & Kelderman P. (2014). Grainsize analysis and metals distribution in sediment fractions of Lake Markermeer in The Netherlands. Int J Environ Sci Toxicol Res 2(8):160–167.
  2. Aimin Zhou, Hongxiao Tang, Dongsheng Wang, (2005). Phosphorus adsorption on natural sediments: Modelling and effect of pH and sediment composition, Water Research, 38, 1245 – 1254.
  3. Aleksander-Kwaterczak, U., Sikora, W.S. & Wójcik, R. (2004), Heavy metals concent distribution in grain-size fractions of the Odra River sediments, Geologia, 30, 2, 165-174.
  4. Anishchenko, O. V.,. Glushchenko, L. A., Dubowskaya, O. P., Zuev, I.V., Ageev, A.V. & Ivanov, E.A. (2015). Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains, Water Resources, vo. 42, Issue 5, 670-682.
  5. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method, 15 years after the termination of the lake restoration procedure. Water, 11, 10, 1-20. DOI: 10.3390/w11102175.
  6. Aydin Isil, F., Aydin, A., Saydut, C. & Hamamci. (2009). A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment, Journal of Hazardous Materials, 168, 664-669.
  7. Brogowski Z.& Kwasowski W. (2015). An attempt of using soil grain size in calculating the capacity of water unavailable to plants. Soil Science Annual, vol. 66(1), 21 – 28.
  8. Canavan, R.W., Van Capellen, P., Zwolskan, J.J.G., van der Berg, G.A. & Slomp, C.P. (2007). Geochemistry of trace metals in a fresh water sediments; field results and diagenetic modelling. Science of Total Environment 381, 263-279.
  9. Clark, M.W. (1923). Studies on Oxidation-Reduction. London.
  10. Dunalska, J.A. (2019). Lake restoration - theory and practice, Monograph of the Committee on Environmental Engineering of the Polish Academy of Sciences. Monografia Komitetu Inzynierii Środowiska PAN, Nr 148 (in Polish)
  11. Frankowski M., Sobczyński, T. & Ziola-Frankowska, A. (2005). The effect of Grain Size Structure on the Kontent of Heavy Metals in Alluvial Sediments of the Odra River, Polish Journal of Environmental Studies 14, 81-86.
  12. Fuentes-Hernández, M. V. (2000) Nitrógeno, fósforo y cociente CIN en los sedimentos superficiales de la laguna de Chacopata, Sucre, Venesuela, Rev. Biol. Trop. 48 Sup. 1: 261-268.
  13. Gierszewski, P. (2018). Hydromorphological conditions of the functioning of the geoecosystem of the Włocławski reservoir, Wyd. Instytut Geografii i Przestrzennego Zagospodarowania PAN, Prace Geograficzne Nr 268, Warszawa 2018.(in polish).
  14. Gierszewski P. (2008). The concentration of heavy metals in the sediments of the Włocławek reservoir as an indicator of the hydrodynamic conditions of deposition, Landform Analysis, Vol. 9: 79–82. (in polish).
  15. Grochowska, J. (2016). Surface runoff of calcium, magnesium, iron, manganese, nitrogen and phosphorus from the Upper Pasłęka catchment, Woda – Środowisko – Obszary Wiejskie, (X-XII), T. 16, Z. 4 (56). 1642-8145s. 33–42. (in polish).
  16. Grochowska, J., Tandyrak, R., Dunalska, J. & Górniak, D. (2004). Drainage basin impact on the hydrochemical conditions in small water reservoirs of the ekstern peripheries of Olsztyn, Limnological Review 4, 95-100.
  17. Guilford J.P. (1978). The nature of human intelligence, , tłum. B. Czerniawska, W. Kozłowski, J.Radzicki, PWN, Warszawa (in polish)
  18. Jancewicz, A., Dmitruk, U., Sośnicki, Ł., Tomczuk, U. & Bartczak, A. (2012). The impact of the catchment development on the quality of bottom sediments in selected dam reservoirs. Ochrona Środowiska, Vol 34, 4. (in polish).
  19. Kostecki, M. (2022), Hydrochemical and hydrobiological studies of the Rybnik dam reservoir in terms of the current state of the quality of water resources and monitoring the phenomena occurring in it, 2002-2022 (unpublished work, in Polish).
  20. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska - thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection 47, 115-127, DOI:10.24425/aep.2021.13728383.
  21. .Kostecki, M. (2014). Restoration anthropogenic lake Pławniowice by hypolimnetic withdrawal metod – limnological study, Works&Studies IPIŚ PAN Zabrze, no 84, (in polish).
  22. Kostecki, M. (2003). Allocation and transformations of selected pollutants in the dam reservoirs of the Kłodnica river node and the Gliwice Canal, Works & Studies IPIŚPAN Zabrze, no 57.
  23. Koś, K. & Zawisza, E. (2015). Geotechnical characteristics of bottom sediments of the Rzeszów Reservoir. Journal of Civil Engineering, Environmenta and Architecture JCEEA, t. XXXII, 62 (3/II/15), 195-208. (in polish).
  24. Lamorski K., Bieganowski, A., Ryżak, M., Sochan, A., Sławiński, C. & Stelmach W. (2014). Assessmentof the usefulness of particle size distribution measured by laser diffraction for soil water retentionmodelling. Journal of Plant Nutrition and Soil Sience, 177(5), 803 – 8013.
  25. Ligęza, S. & Smal, H. (2003). Particle size distribution of bottom sediments from the discharge water reservoir of Zakłady Azotowe Puławy. Acta Agrophysica 87(1(2)):271-277. (in polish).
  26. Ligęza, S. & Smal, H. (2002). Differentiation of pH and granulometric composition of bottom sediments of the Zemborzycki Reservoir. Acta Agrophysica 70, 235-245. (in polish).
  27. Machowski, R., Rzetala, M.A., Rzętala, M. & Solarski, M. (2019). Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland), Scientific Reports, 9, 14445.
  28. Mander, D. & Jarvet, A. (1998). Buffering role of smal! reservoirs in agricultural catchments. Internat. Rev. Hydrobiol., 83 (spec. iss.), 639-646.
  29. Мартынов, A. B. (2018). Редкоземельные элементы в аллювиальных почвах поймы р. Амур: влияние катастрофического паводка 2013 г. Вестник СПбГУ. Науки о Земле. Т. 63. Вып. 2
  30. Matijevic, S., Bilic, J., Ribicic, D. & Dunatow, J. (2012). Distribution of phosphorus species in below-cage sediments at the tuna farms in the middle Adriatic Sea (Croatia), ACTA ADRIAT.,53(3): 399 – 412. ISSN: 0001-5113 AADRAY
  31. Matijewic, S., Kujakowic-Gaspic, Z., Bogner, D., Gugic, A. & Martinowic, I. (2008). Vertical distribution of phosphorus species and iron in sediment at open sea stations in the middle Adriatic region. ACTA ADRIAT., 49(2): 165 – 184. ISSN: 0001-5113 AADRAY.
  32. Matijevic, S., Bogner, D., Morovic, M., Ticina, V. & Grec., B., (2008). Characteristics of the sediment along the Eastern Adriatic coast (Croatia). Fresenius Environmental Bulletin, 17, 10B, SI, 1793-1772.
  33. Mazierski, J. & Kostecki M. (2021). Impact of the heated water discharge on the water quality in a shallow lowland dam reservoir. Archives of Environmental Protection, 47, 2, 29-47. DOI: 10.24425/aep.2021.137276.
  34. Moses, L., Sheela A., Janaki, L., Sabu, J. (2011). Influence of lake morphology on water quality, Environmentasl Monitoring and Assessment, Volume: 182, Issue: ‏ 1-4, Pages: 443-454, (2011).
  35. Pohl, A., Tytła, M., Kernert, J. & Bodzek, M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis. Odsalanie i uzdatnianie wody, 258, 207–222. Doi:10.5004/dwt.2022.28459
  36. Qixing Zhou, Gibson, Ch.E. & Yinmei Zhu, (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK, Chemosphere. 42, 221 – 225.
  37. Rząsa, S. & Owczarzak, W. (2013). Methods for the granulometric analysis of soil for science and practice. Polish J. Soil Sci., 46(1), 1-50.
  38. Rzętała, M. (2008). Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopresion a case study of Upper Silesian Region, Wyd. Prace Naukowe Uniwersytetu Śląskiego, Nr 2643, Katowice 2008.(in Polish).
  39. Sedlácek, J., Bábek, O. & Nováková, T. (2017). Sedimentary record and anthropogenic pollution of a complex, multiplesource fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic. Sci. Total Environ. 574, 1456–1471.
  40. Sojka, M., Siepak, M. & Gnojska, E. (2013). Assessment of heavy metals content in bottom sediments of the initial part of the Old Town reservoir on the Poviat river. Annual Set The Environment Protection, Rocznik Ochrona Środowiska, Volume/Tom 15. ISSN 1506-218X 1916–1928. (in polish).
  41. Stocker, R. & Imberger, J. (2003). Horizontal transport and dispersion in the surface layer of a medium‐sized lake. Limnol. Oceanogr. 48(3), 971-982. Doi:10.4319/lo.2003.48.3.0971.
  42. Suresh, G., Sutharsan, P., Ramasamy, V. & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 84, 117–124.
  43. Tarnawski, M., Baran, A. & Jasiewicz, C. (2012). Assessment of physico-chemical properties of the bottom sediments of Hańcza reservoir. Proceedings of ECOpole DOI:10.2429/proc.2012.6(1)042 2012;6(1). (in polish)
  44. The Polish standard 2008. The Solis and mineral materiale – Sampling and grainsize analysis.
  45. Tuszyńska, A. & Kołecka, K. (2011). Influence of the particle size distribution of pollutants on the quality of water and sewage treated in ecological systems. Gaz, Wwoda i Technika Sanitarna, 12, 486-490 (in polish).
  46. Wojtkowska, M. & Matula, M. (2016) Analysis of heavy metals in selected granulometric fractions of bottom sediments of the Utrata River, Annual Set The Environment Protection, Rocznik Ochrona Środowiska, 18, ISSN 1506-218X 667-680. (in polish).
  47. Wojtkowska, M., Niesiobędzka, K. & Krajewska, E. (2005). Heavy metals in water and bottom sediments of the Czerniakowskie Lake. [In:] The cycle of elements in nature. B. Gworek (Ed). Warszawa: Wydaw. IOŚ s. 194–197, (in polish).
Go to article

Authors and Affiliations

Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, PAS, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The distribution of heavy metals in the bonom sediments has been determined, It has been shown that they are spaciously differentiated. The differentiation is a result of water movement, eutroficat ion, bioaccurnulation and anthropoprcsion processes. As a result of specific water movement the area of intensity of the heavy metals accumulation was created. This area (about 150 ha) is located in the northwest part of the reservoir. The maximal concentrations of heavy metals for this region are: for cadmium 30 mg Cd/kg, for nickel 55 mg Ni/kg, for chromium 130 mg Cr/kg, for lead 160 mg Pb/kg, for copper 1000 mg Cu/kg, for zinc 1300 mg Zn/kg. The localization of the most polluted areas is essential for possible reclamation procedures to improve water and overall ecosystem quality.
Go to article

Authors and Affiliations

Maciej Kostecki
Eligiusz Kowalski
Download PDF Download RIS Download Bibtex

Abstract

Results of the study presented in this article and earlier have been the first ones since the Gliwice Canal was put into service in 1939. Until now there have been no investigations concernig (the Canal state in the area of hydro-chemical study), sanitary state or level of sediment contamination. The aim of this study was therefore to obtain information about the current pollution. The level of aquatic environment in some reaches of Gliwice Channel. This article presents the results of investigations carried out in order to assess of water quality in the Canal relating to nitrogen and phosphorus compounds. The following nutrients were determined in water samples ammonia, nitrite and nitrate nitrogen as well as organic dissolved and organic suspended nitrogen. In addition concentrations of orthophosphates, polyphosphates and organic phosphorus were analyzed. The analyses were carried out in water samples taken in six samplings from January till June 2000. Water samples were drawn at 7 sampling points. Samples of bottom sediments were taken at 21 sample points. Basing on the results of analyses the water quality of Gliwice Canal has been determined. A classification of chemical parameters was carried out under the provision in force. Basing on this classification we can state that water in the Canal is does not quality for any class system. We can also affirm that the water quality on the whole length of Gliwice Canal has improved only slightly even though waters of lower pollution levels supply the Canal.
Go to article

Authors and Affiliations

Maciej Kostecki
Jerzy Kozlowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work was to analyse the results of investigations on the heavy metals content in the water of the Nakło-Chechło Reservoir. In this study the importance of this element in the characteristic of aquatic environment is stressed. Small content of heavy metals has excluded the possibility of the discharge of municipal and industrial sewage. All of these toxic substance included in water have confirmed that the Nakło- Chechło Reservoir is under strong hydrological and chemical influence of the precipitation and surface run off from the Reservoir basin area.
Go to article

Authors and Affiliations

Agata Domurad
Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The results of first investigation (from the formation in 1939) Gliwice Channel of polycyclic hydrocarbons concentration in bottom sediments was given. PAHs is a very important element of pollution for point of view of bottom deposits utilisation. From the Gliwice Harbour during the channel concentrations of PAHs are reduce. The most polluted is section of first 10 km. The highest concentration (7528 μgfkg) was determined in the bottom sediments of Kłodnica River, on the water intake to the channel. The smallest concentration was determined on the section from 19 to 28.9 km of channel (175 to 700 μg/kg ). The section from chemical factory Blachownia to Kozie Harbour has concentrations 946.88 μgfkg to 2254.915 μgfkg. During the every flood-gate-sections the PAHs concentrations were increased. The hydraulic conditions are the agent determining the distribution of PAHs by influent on the organic suspended solids sedimentation.
Go to article

Authors and Affiliations

Maciej Kostecki
Marianna Czaplicka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the conversion dynamics of basic nitrogen and phosphorus forms as main factors initiating eutrophication process in Naklo-Chechlo reservoir. Limnological investigations of recreation reservoir were carried out in the period from January to December 1996. The results of chemical analyses of water samples taken in two collecting points of the reservoir and a composition of surface run-off from the basin area, have been presented.
Go to article

Authors and Affiliations

Maciej Kostecki
Agata Domurad
Download PDF Download RIS Download Bibtex

Abstract

The inter-reservoir enrichment phenomenon was exploited to curtail the reservoir eutrophication process. The Plawnowice reservoir (South Poland - Upper Silesia Region) has an area of 225 ha, volume of 29 mln m3, and a depth of 15 meters. According to the monitoring results in the years 1993-1998 the reservoir was qualified as hypereutrophic. Beginning in December 2003 a bottom pipe for hypolimnetic withdrawal was installed. In the period 2004-2010 a negative phosphorous balance was achieved. The discharge load of total phosphorous was in the beginning twice as high as the inflowing. During the first eight years with an inflow of 75 Mg P, the removed load of total phosphorus was 103 Mg P. In effect the net balance was 28 Mg P. The load, in respect to the surface area, of 2.2 to 3.3 gP/m2 per year, was reduced to a negative load of - 0.48 to - 3.3 gP/m2. The hypolimnetic maximum concentration of orthophosphates equal to 1.254 mg P-PO4/dm3 in 2004, was reduced to 0.236 mg P-PO4/dm3 in 2011. The respective factors and rate of eutrophication curtailing, including changes of phosphorus compounds have been discussed. Also changes of pH and visibility of the Secchi disc are presented. It was concluded that the presented method of hypolimnetic withdrawal is a lasting and effective process

Go to article

Authors and Affiliations

Maciej Kostecki
Jan Suschka
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the relationship between the of the water quality parameters in an artificial reservoir used as cooling ponds. Multivariate methods, cluster analysis and factor analysis were applied to analyze eighteen physico-chemical parameters such as air and water temperature, dissolved oxygen concentration, visibility of the Secchi disk, concentrations of total nitrogen, ammonium, nitrate, nitrite, total phosphorus, phosphate, concentrations of calcium, magnesium, chlorides, sulfates and total dissolved salts, pH, chemical oxygen demand and electric conductivity from 2002-2017 to investigated cooling water discharge. Hierarchical cluster analysis (CA) allowed identified five different clusters that reflect the different water quality characteristics of the water system. Similar results were obtained in exploratory factor analysis, five factors were obtained with 65.96% total variance. However, confirmatory factor analysis showed that four latent variables: salinity, temperature, eutrophication, and ammonia provide better fit to the data than a five-factor structure. Correlations between latent variables temperature, eutrophication and ammonia show a significant effect of temperature on the transformation of nitrogen and phosphorus compounds.
Go to article

Bibliography

  1. Arsonists, G.B., Stow, C.A., Steinberg, L.J., Kenney M.A., Lathro, R.C., McBride, S.J. & Reckhow, K.H. (2006). Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling, 192, pp. 385–409. DOI:10.1016/j.ecolmodel.2005.07.028
  2. Baran, A., Tarnowski M., Urbański K., Klimkowicz-Pawlas A. & Spałek I. (2017). Concentration, sources and risk assessment of PAHs in bottom sediments, Environmental Science and Pollution Research, 24, pp. 23180–23195. DOI 10.1007/s11356-017-9944-y
  3. Bloemkolk, J.W., van der Schaaf, R.J. (1996). Design alternatives for the use of cooling water in the process industry: minimization of the environmental impact from cooling systems. Journal of Cleaner Production 4(1), pp. 21-27.
  4. Boyacioglu, H. & Boyacioglu, H. (2018). Application of environmetric methods to investigate control factors on water quality on water quality. Archives of Environmental Protection. 43 (3) pp. 17–23. DOI: 10.1515/aep-2017-0026
  5. Boyacioglu, H. & Boyacioglu, H. (2018) Environmental Determinants of Surface Water Quality Based on Environmetric Methods. Environment and Ecology Research. 6(2), pp. 120-124. DOI: 10.13189/eer.2018.060204
  6. Choiński, A. & Ptak, M. (2013). Variability of thermals and water levels in Konin lakes as a result of the activity of the «Konin» and «Pątnów» power plants. Науковий вісник Східноєвропейського національного університету імені Лесі Українки РОЗДІЛ І. Фізична і конструктивна географія. 16 (265), pp. 31-40 (in Polish). http://www.esnuir.eenu.edu.ua/bitstream/123456789/11181/1/5.pdf
  7. Conclusions from the forecast analysis for the energy production sector – annex no. 2 to Poland's energy policy until 2040 (PEP 2040 – ver 2.1), Ministry of Energy Warsaw 2019 (in Polish). https://www.gov.pl/attachment/cff9e33d-426a-4673-a92b-eb4fb0bf4a04
  8. Doria, M.F, Pidgeon, N. & Hunter, P.(2005). Pe.2005.0245rception of tap water risks and quality: a structural equation model approach. Water Science & Technology, 52 (8) pp. 143–149. DOI:10.2166/wst.2005.0245
  9. Dragan, D. & Topolŝek, D. (2014). Introduction to Structural Equation Modeling: Review, Methodology and Practical Applications. The International Conference on Logistics & Sustainable Transport, 19–21 June 2014 Celje, Slovenia
  10. Dyer, K., Holmes, P., Roast S.,. Taylor, C.J.L. & Wicher, A. (2017). Challenges in the management and regulation of large cooling water discharges. Estuarine, Coastal and Shelf Science, 190, pp. 23-30. DOI: 10.1016/j.ecss.2017.03.027
  11. European Environment Agency, (2018). Water abstraction by sector, EU, European Environment Agency https://www.eea.europa.eu/data-and-maps/daviz/water-abstraction-by-sector-eu-2/download.table
  12. Fan, Y., Chen, J., Shirkey, G., John, R., Susie, R. Wu., S.R., Park, H. & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes 5, 19. DOI 10.1186/s13717-016-0063-3
  13. Fox J., Nie Z. & ,Byrnes, J. (2020). Package ‘sem’. https://cran.r-project.org/web/packages/sem/sem.pdf
  14. Gao, C., Yan, J., Yang, S. & Tan G. (2011). Applying Factor Analysis to Water Quality Assessment: A Study Case of Wenyu River [In] S. Li (Ed.): Nonlinear Mathematics for Uncertainty and its Applications, 2011, Springer-Verlag Berlin Heidelberg , pp. 541–547. ISBN 978-3-642-22832-2. DOI 10.1007/978-3-642-22833-9
  15. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M.& Fernandez, L. (2000). Temporal evolution of groundwater analysis. Water Research 34 (3), pp. 807-16. DOI: 10.1016/S0043-1354(99)00225-0
  16. Hossain, M.G., Selim Reza, A.H.M. & Lutfun-Nessa, M. (2013). Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization. Journal of the Geological Society of India, 81, pp. 377–384. DOI: 10.1007/s12594-013-0048-0
  17. Jabłońska-Czapla, M., Szopa, S., Zerzucha, P., Łyko, A. & Michalski, R. (2015). Chemometric and environmental assessment of arsenic, antimony, and chromium speciation form ocurrence in a water reservoir subjected to thermal anthropopressure. Environmental Science and Pollution Research 22, pp.15731–15744. DOI: 10.1007/s11356-015-4769-z
  18. Jabłońska, M., Kostecki, M., Szopa, S., Łyko, A. & Michalski, R. (2012). Speciation of Inorganic Arsenic and Chromium Forms in Selected Water Reservoirs of Upper Silesia. Ochrona Środowiska, 34(3), pp. 25–32. (in Polish)
  19. Jancewicz, A., Dmitruk, U., Sosnicki, L. & Tomczuk, U. (2012). Influence of Land Development in the Drainage Area on Bottom Sediment Quality in Some Dam Reservoirs. Ochrona Środowiska 34(4), pp. 29–34.(In Polish)
  20. Johnson, R.A. & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis, Pearson Education, Inc. 6th ed. ISBN 0-13-187715-1
  21. Johst M. & Rothsteinn B., (2014). Reduction of cooling water consumption due to photovoltaic and wind electricity feed-in. Renewable and Sustainable Energy Reviews 35, 311–317 DOI: 10.1016/j.rser.2014.04.029
  22. Jolliffe I.T. (2002). Principal Component Analysis, Second Edition Springer Verlag. ISBN 0-387-05442-2
  23. Kannel P.R., Lee S., Kanel S.R. & Khan S.P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system, Analytica Chimica Acta 582, pp. 390–399. DOI: 10.1016/j.aca.2006.09.006
  24. Kim, S.E., Seo, I.W. & Choi S.Y. (2017). Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function. Environmental Modelling & Software 94, pp. 21-35. DOI: 10.1016/j.envsoft.2017.03.035
  25. Koczorowska, R. (2001). The impact of a fuel-energy complex on selected ]elements of water balance [In] German, K. & Balon, J. (Eds) Przemiany środowiska przyrodniczego Polski a jego funkcjonowanie, IGiGP UJ, Kraków, ss. 814., pp. 158-163. (in Polish) https://denali.geo.uj.edu.pl/publikacje,000025?&page=start&menu=3&nr=000025_018&brf=summary#000025_018
  26. Korkmaz, S., Goksuluk, D. & Zararsiz, G. (2020). Package ‘bestNormalize’ https://cran.r-project.org/web/packages/MVN/MVN.pdf
  27. Kostecki, M. (2005) Specificity of the thermal conditions of the "Rybnik" water reservoir as an effect of heated waterseated discharge, Problemy Ekologii 9 (3) 151-161 (in Polish)
  28. Kostecki, M. & Kowalski, E. (2007). Spatial arrangement of heavy metals in the dam-reservoir sediments in the conditions of anthropomixion, Archives of Environmental Protection, 3, pp. 67–81.
  29. Kostecki, M. (2007). Bioaccumulation of heavy metals in selected elements of trophic chain of anthropogenic reservoirs in the aspect of environmental protection and economical function. Institute of Environmental Engineering of the Polish Academy of Sciences, Works & Studies, 71, pp. 87. (in Polish)
  30. Kowalska-Musiał M. & Ziółkowska, A. (2013). Factor analysis in investigating relation structure in relation marketing. Zeszyt Naukowy Wyższej Szkoły Zarządzania i Bankowości w Krakowie. (in Polish)
  31. Kowalski, E., Mazierski, J. (2008). Effects of cooling water discharges from a power plant on reservoir water quality. Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology, 37, pp. 107- 118. DOI: 10.2478/v10009-008-0001-5
  32. Kumar, J.I.N. (2009). Assessment of spatial and temporal fluctuations in water quality of a tropical permanent estuarine system - Tapi, West Coast India. Applied Ecology and Environmental Research 7(3), pp. 267-276. DOI: 10.15666/aeer/0703_267276
  33. Liu, C.W., Lin, K.H. & Kuo, Y.M., (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment 313, pp. 77–89. DOI: 10.1016/S0048-9697(02)00683-6
  34. Loska,K., Korus, I. & Wiechuła, D. (2009). Arsenic speciation in Rybnik reservoir. Architecture Civil Engineering Environmen, 2(3) pp. 109-116.
  35. Loska, K. , Wiechuła, D. , Pęciak, G. (2003a) Contamination of the arsenic in the bottom sediment of the Rybnik Reservoir. Problemy Ekologii 7 (1), pp. 29-32 (in Polish))
  36. Loska, K., Korus, I., Pelczar J., Wiechuła D. (2005) Analysis of spatial distribution of arsenic in bottom sediments of the Rybnik Reservoir. Gospodarka Wodna 65(3), pp. 104-107. (in Polish)
  37. Loska,.K., Wiechuła, D. (2003b). Application of principal component analysis for the
  38. estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51, pp. 723–733. DOI: 10.1016/S0045-6535(03)00187-5
  39. Loska K., Wiechuła D., Cebula J. (2000) Changes in the Forms of Metal Occurrence in Bottom Sediment under Conditions of Artificial Hypolimnetic Aeration of Rybnik Reservoir, Southern Poland. Polish Journal of Environmental Studies 9(6), pp. 523-530.
  40. Loska K., Cebula J., Pelczar J., Wiechuła D. & Kwapuliński J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, & Soil Pollution, 93, pp. 347–365. DOI: 10.1023/A:1022121615949
  41. Loska, K., Wiechula D., Pelczar J. & Kwapulinski J. (1994) Occurrence of heavy metals in bottom sediments of a heated reservoir [the Rybnik Reservoir, southern Poland]. Acta Hydrobiologica. 36(3), pp. 281-295
  42. Loska K., Wiechuła D., Cebula J. & Kwapulinski J (2001) Occurrence of sodium, potassium and calcium in the Rybnik Reservoir. Ochrona Powietrza i Problemy Odpadów, vol. 35 (6), pp. 229–234. (in Polish)
  43. Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students' evaluations of university teaching. Structural Equation Modeling, 16(3), 439-476. DOI:10.1080/10705510903008220
  44. Masduqi, A., Endah, N., Soedjono, E. S., Hadi, W. (2010) Structural equation modeling for assessing of the sustainability of rural water supply systems. Water Science & Technology: Water Supply—WSTWS | 10.5 pp. 815 – 823. DOI: 10.2166/ws.2010.339
  45. Mustapha, A. & Aris, A.Z. (2012). Multivariate Statistical Analysis and Environmental Modeling of Heavy Metals Pollution by Industries. Polish Journal of Environmental Studies 5, pp.1359-1367.
  46. OpenStreetMap Foundation (OSMF) https://www.openstreetmap.org/copyright/en
  47. Petersen, W., Bertino, L., Callies, U. & Zorita E. (2001). Process identification by principal component analysis of river water-quality data, Ecological Modelling 138, pp. 193 – 213.
  48. Peterson R.A. (2020). Package ‘bestNormalize’
  49. https://cran.r-project.org/web/packages/bestNormalize/bestNormalize.pdf
  50. R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  51. Rajagopal, S., Venugopalan, V.P. & Jenner H.A., (2012). Cooling Water Systems: Efficiency vis-à-vis Environment. [In] Rajagopal, S., Jenner, H.A. & Venugopalan V.P. (Eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems, pp. 455-461
  52. Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. European Commission, December 2001. http://eippcb.jrc.ec.europa.eu/reference/BREF/cvs_bref_1201.pdf
  53. Revelle W. (2020) Package ‘psych’ https://cran.r-project.org/web/packages/psych/psych.pdf
  54. Rodrigues, P.M.S.M, Rodrigues, R.M.M., Costa, B.H.F., Tavares Martins, A.A.A.L., Estaves da Silva, J.C.G. (2010) Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt, Chemometrics and Intelligent Laboratory Systems 102, pp. 130–135. DOI: 10.1016/j.chemolab.2010.04.014
  55. Ryberg, K. R. (2017) Structural Equation Model of Total Phosphorus Loads in the Red River of the North Basin, USA and Canada. Journal of Environmental Quality. 46 pp. 1072-1080. DOI: 10.2134/jeq2017.04.0131
  56. Rzętała, M. (2008). Operation of water reservoirs and the course of limnic processes in diverse conditions anthropopression on the example of the Upper Silesian region. Katowice: University of Silesia Publishing House.(in Polish)
  57. Simeonov, V. Stratis, J.A. Samara, C., Zachariadis,G., Voutsa, D., Anthemidis, A., Sofoniou, M., Th. Kouimtzis, Th. (2003) Assessment of the surface water quality in Northern Greece, Water Research 37, pp. 4119–4124. DOI: 10.1016/S0043-1354(03)00398-1
  58. Singh, K.P., Malik, A., Mohan, D., Sinha, S., (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Research 38, pp. 3980-3992. DOI: 10.1016/j.watres.2004.06.011
  59. Standard Methods for the Examination of Water and Wastewater (2017) 23rd Edition American Public Health Association, American Water Works Association, and Water Environment Federation. ISBN: 978-0-87553-287-5
  60. Statistical Yearbook of Republic of Poland, Warsaw, 2018. (in Polish)
  61. Vega, M., Pardo, R., Barrado, E. & Debán L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Research 32 pp. 3581-3592. DOI: 10.1016/S0043-1354(98)00138-9
  62. Viswanath, N.C., Kumar, P.G.D. & Ammad K.K. (2015). Statistical Analysis of Quality of Water in Various Water Shed for Kozhikode City, Kerala, India, Aquatic Procedia 4 pp. 1078 – 1085. DOI: 10.1016/j.aqpro.2015.02.136
  63. Wang, S.-W., Liu, C.-W. & Jang, C.-S. (2003). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, pp. 460–47. DOI: 10.1016/j.apgeochem.2006.11.011
  64. Wiechuła, D., Loska, K. & Korus, I. (2005). Lead partitioning in the bottom sediment of Rybnik reservoir (southern Poland). Water, Air, & Soil Pollution 164, pp. 315–327.
  65. Widziewicz, K. & Loska, K. (2012) Multivariate statistical analyses on arsenic occurrence in Rybnik reservoir. Archives of Environmental Protection 38(2) pp.12-23. DOI: 10.2478/v10265-012-0014-8
  66. Wu, E.M.-Y., Tsai, C.C., Cheng, J.F., Kuo, S.L., Lu, W.T. (2014) The Application of Water Quality Monitoring Data in a Reservoir Watershed Using AMOS Confirmatory Factor Analyses, Environmental Modeling & Assessment 19, pp. 325–333. DOI 10.1007/s10666-014-9407-5
  67. Zemełka, G. & Szalinska, E. (2017). Heavy Metal Contamination of Sediments from Recreational Reservoirs of Urban Areas and its Environmental Risk Assessment, Engineering and Protection of Environment, 20(1), pp.131-145. DOI: 10.17512/ios.2017.1.10
Go to article

Authors and Affiliations

Jerzy Mazierski
1
Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of research on the role of water mass movements arising as a result of anthropoprcsion, in heavy metals arrangement in sediments have been presented on the example of dam reservoir in Rybnik. The carried out thermo-visual measurements of the thermally polluted Rybnik dam-reservoir revealed spatial diversification of water temperature. The zones of diverse dynamics of water mass movements have been shown, including the zone of intensive water flow and the zone of stagnation. [t has been proved that the values of these concentrations arc strongly diverse in space. This is the result of the cutrophication grade, bioaccumulation process, and anthropomixtion. As a result of specific water movement, which transports biomass inside the ecosystem, the zone, developed in which the transfer of heavy metals to the sediments is intensified. This zone of about 150 ha in area was located. The maximum concentrations of metals described in this area arc: for cadmium - 30 mg/kg, for nickel - 55 mg/kg, for chromium - 130 mg/kg, for lead - 160 mg/kg, for copper - 1 000 mg/kg, for zinc - 1300 mg/kg. In the case ofmobile fractions, potentially capable of freeing themselves from sediments the concentration values are: for cadmium - 14 mg/kg, for nickel - 15 mg/kg, for chromium - 4 mg/kg, for lead - 8 mg/kg, for copper - 100 mg/kg, for zinc - 600 mg/kg. The participation ofmobile fractions of metals in their total quantity was: for zinc - 46%, for cadmium - 46%, for nickel - 27%, for copper - 10%, for lead- 5%, for chromium - 3%. The relationship between the total concentrations of metals likewise their mobile forms and the content of organic matter in sediments, points to the role ofbiomass of plankton organisms and detritus as bio-sorbcnt in the process of transporting and transferring metals from water to sediments. With reference to water mass dislocation effect inside the reservoir under the influence of anthropogenic factor, in the situation when this factor is stronger than the factors which cause natural water movements, author suggests using the term anthropomixion.
Go to article

Authors and Affiliations

Maciej Kostecki
ORCID: ORCID
Eligiusz Kowalski
Download PDF Download RIS Download Bibtex

Abstract

The research determined the concentrations of selected polycyclic aromatic hydrocarbons (PAHs) in water and sediments of Kłodnica River reservoirs and distribution depending on number of rings, ecotoxicological impact on studied ecosystems and possible sources of origin. Samples were subjected to qualitative and quantitative analysis by gas chromatography coupled with a GC-MS mass detector, using a ZB-5MS column and electron ionization. The sum of 16 PAHs in water ranged 0.111–0.301 μg/L (mean 0.200 μg/L) in Dzierżno Duże, 0.0410–0.784 μg/L (mean 0.303 μg/L) in Dzierżno Małe and 0.0920–1.52 μg/L (mean 0.596 μg/L) in Pławniowice. While in sediments respectively: 17.5–37.2 μg/g (mean 26.8 μg/g), 4.33–8.81 μg/g (6.43 μg/g) and 2.27–9.50 μg/g (5.30 μg/g). The concentration of PAHs in sediments of reservoirs, which spatial management of the catchment area accounts for over 90% of agricultural and forest land, was up to eight times lower than in sediments of the reservoir which is 69%, while built-up and transport areas are 24%. In sediments of Dzierżno Małe and Pławniowice PAHs with 5 and 6 rings dominate, while in Dzierżno Duże – 2 and 3 rings. Higher concentrations of PAHs with higher molecular weight, found in the bottom water layers, confirm the role of the sedimentation process in the transport of these compounds in reservoirs. Assessment of sediment quality, based on ecotoxicological criteria, showed that PAHs may cause toxic effects in Dzierżno Duże, while in Dzierżno Małe and Pławniowice can cause sporadic adverse effects. The likely source of PAHs in reservoirs is low emissions.
Go to article

Authors and Affiliations

Alina Pohl
Maciej Kostecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The results of the first (since 1939) hydrochemical investigations of Gliwice Channel have been presented. The polluted K.lodnica River affects bad water quality of the canal. For example the concentrations of chlorides (Cl), sulfates (S04), sodium (Na), potassium (K), conductivity and dissolved substances quality of water is out of standards. In the case of BOD and COD the water quality is changed from out of classes to II class. pH and oxygen concentration are in I class. Although no salinity waters flow into the canal, the water quality get improved slightly only. The decrease of pollutants concentration is related to theirs dispersion. In the case of water quality the self-purification processes are of secondary importance.
Go to article

Authors and Affiliations

Maciej Kostecki
Jerzy Kozłowski
Bartłomiej Zych

This page uses 'cookies'. Learn more