Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a fi eld study on using mineral materials (fine-grained sand and medium-grained gravel) to reduce the concentration of readily soluble salts in a roadside environment. The investigated soils were Rendzic Sceletic Leptosols from an urban area characterized by a shallow humus horizon with a high content of skeletal parts, as well as a lack of homogeneity of the material in the soil profile. All soil samples were taken from five plots located along the main streets in the city of Opole (Southern Poland). It was revealed that the use of fine-grained sand and medium-grained gravel improved the structure of the surface soil layer, and thus favoured the migration of Na+ and Cl- ions into the soil profile. In comparison to control surfaces readily soluble salts were reduced with gravel and sand application. Furthermore, the mineral materials introduced on the soil surface for salinity neutralization did not affect the quality of the tested roadside calcareous soils. The results indicate that the use of mineral materials reduces soil salinity caused by NaCl. They also show the need to find new methods of salt neutralization, especially of roadside soils in order to improve and protect the quality of the environment.

Go to article

Authors and Affiliations

Katarzyna Łuczak
1
Izabella Pisarek
1
Grzegorz Kusza
1

  1. Department of Land Protection, Faculty of Natural Sciences and Technology, University of Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aluminium is one of the main soil components. Usually it is a part of non-toxic aluminosilicates but in low pH values its mobility is higher and - especially in monomeric form is toxic for plants. Selenium is an essential element necessary for animals and humans. Its compounds have anticancer and anti mutagenic character. However, its high uptake from environment, e.g. with food or water could lead to various diseases including embryonic deformity, decreased hatchling survival and death to aquatic organisms. Soil contamination with aluminium leads to disturbances in plant growth as a result of low calcium and magnesium uptake. High concentrations of selenium lead to its accumulation in plant tissues what is the beginning of selenium fate in food chain. In this work a cultivated layer of soils located near five industry plants in the town of Opole (southern Poland) were investigated. Aluminium and selenium content in soils is an effect of two factors: its natural occurrence in rocks (natural content) and human activity - especially chemicals from agriculture, industrial and transport pollutants. Aluminium was determined in the range of 3440 to 14804 mg/kg d.w. Obtained results of selenium concentration covered the range from 27.1 to 958.1 μg/kg d.w. These results are slightly higher than concentrations noted in natural or non-polluted soils, but still low. These amounts of selenium could have more positive than negative effects. Aluminium and selenium concentrations were discussed concurrently with base soils parameters, such as pH, EC and granulometric fractions composition.

Go to article

Authors and Affiliations

Tomasz Ciesielczuk
Magdalena Senze
Grzegorz Kusza
Monika Kowalska-Góralska

This page uses 'cookies'. Learn more