Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Organic phase change materials (PCMs), which are typically used as the accumulating material in latent heat thermal energy storage, provide chemical and thermal stability, but have low thermal conductivity. This limits heat transfer rates and prolongs storage charging/discharging time. A method to improve the thermal conductivity of organic PCMs is to add nanomaterials with high thermal conductivity. The paper presents the research on the effect of the addition of graphene nanoparticles (GNPs) on the thermal conductivity of organic PCM (RT28 HC), and its energy storage properties. The transient hot wire and the pipe Poensgen apparatus methods were used to measure thermal conductivity, and the differential scanning calorimetry method was used to determine the heat capacity and phase change temperature. The achieved characteristics of thermal conductivity depending on the amount of added graphene nanoparticles (and stabilizer) indicate that GNPs allow to increase the thermal conductivity on average by 26–87% in the solid state and by 7–28% in the liquid, but this reduces the PCM heat capacity. Therefore, the paper indicates what mass fraction of dopants is optimal to achieve the greatest improvement in thermal conductivity of RT28 HC and its smallest reduction in heat capacity, to use this nano-enhanced PCM in practice.
Go to article

Authors and Affiliations

Paulina Rolka
1
Marcin Lackowski
1

  1. The Szewalski Institute of Fluid Flow Machinery, Polish Academy ofSciences, Fiszera 14, 80-231 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents numerical simulation of two-phase flow in a heated capillary with evaporation on the meniscus. To solve the problem, a model of evaporation from meniscus was developed in which the dynamics of liquid-vapour interface is described by the Cahn-Hilliard equation. The numerical simulations were performed using commercial software for 2D axially symmetric case. The flow evolution was analysed for different values of heat transfer coefficient at the capillary wall and inlet liquid mass flow rate.
Go to article

Authors and Affiliations

Jarosław Karwacki
Marcin Lackowski
Helena Nowakowska
Dariusz Butrymowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of experimental investigation of microchannel boiling flow which was controlled by dielectrophoretic (DEP) restrictor. The DEP restrictor was connected to the microchannel liquid supply tube. Operation of DEP restrictor influenced the flow rate at the microchannel inlet. Resulting changes in flow structures and vapour content along the microchannel were observed and analysed with a high-speed video camera. Video recordings were synchronised with measurements of differential pressure between the channel inlet and outlet. It was found that it is possible to change average void fraction in the microchannel by switching on and off the voltage applied to the restrictor electrodes. However, to achieve significant variation of the void fraction, applied voltage should be of the order of 2000 Vpp. The voltage switching also generates oscillations of the differential pressure. The amplitude of these oscillations is proportional to the voltage magnitude, reaching 35 Pa for 2400 Vpp.

Go to article

Authors and Affiliations

Tomasz Przybyliński
Marcin Lackowski
Roman Kwidziński
Jarosław Karwacki

This page uses 'cookies'. Learn more