Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Optimizing the aerodynamic structure of composite insulators can guarantee the safe operation of power systems. In this study, we construct a simulation model for composite insulator contaminant deposition using the COMSOL simulation software, and the rationality of the simulation model and method is verified through wind tunnel experiments. Taking the FXBW4-110/100 composite insulator as an example, we adopt a progressive optimization plan to explore the impacts of shed spacing s, and shed inclination angles α and β on its contaminant deposition characteristics under DC and AC voltages. Based on the numerical simulation results, we analyze the antifouling performance of insulators before and after structural optimization. The results indicate the following: 1) The contaminant deposition of the insulator under AC and DC voltages is negatively correlated with the shed spacing s, but positively correlated with the lower inclination angle β. 2) Under AC voltages, the contaminant deposition of the insulator increases with the upper inclination angle α, while under DC voltages, the contaminant deposition shows an uptrend first, then a downtrend and then an uptrend again with the increase of the upper inclination angle α. 3) Compared with the original model, the AC-optimized model ( α = 6°, β = 2° and s = 98 mm) with a larger shed spacing s, and smaller shed inclination angles α and β showed superior antifouling performance at wind speeds of no less than 2 m/s, and under the typical conditions ( v = 2.5 m/s, d = 20 μm, and ρ = 2 200 kg/m 3), its contaminant deposition is 15% less than that of the original model ( α = 10°, β = 2° and s = 80 mm).
Go to article

Authors and Affiliations

Yukun Lv
1
Zeze Chen
1
ORCID: ORCID
Qian Wang
1
Yao Lu
1
Xiaojing Li
1

  1. Department of Power Engineering, School of Energy, Power and Mechanics, North China Electric Power University, China
Download PDF Download RIS Download Bibtex

Abstract

To explore the influence of surface energy on the contamination characteristics of insulators, COMSOL Multiphysics software was used to simulate the contamination characteristics of XWP 2-160 insulators under wind tunnel conditions, and the rationality of the modified expression of the dynamic deposition model of the contaminated particles was verified. The change of contamination characteristics before and after changing the surface energy of insulators under natural conditions was simulated and analyzed. The results show that under the original surface energy (72 mJ/m 2) and low surface energy (6.7 mJ/m 2) with the increase in particle size, the contamination amount of an insulator surface area decreases first and then increases. When the wind speed is 2 m/s, the change in the particle size has the most pronounced effect on the amount of contamination. The amounts of contamination for the low surface energy are 64–75%, 60–95%, 55–91% and 54–78% lower than those for the original surface energy for particle sizes of 10, 15, 20 and 25 μm, respectively. For the same wind speed, when the size of contamination particles increases, the difference between the ratio of DC and AC contamination accumulation is gradually increasing because of the influence of the electric field force. From the perspective of the insulator preparation process, the development of low surface energy insulators can improve their anti-fouling performance.
Go to article

Authors and Affiliations

Yukun Lv
1
Qian Wang
1
Zeze Chen
1
ORCID: ORCID
Jiawen Wang
1

  1. Department of Power Engineering, North China Electric Power University

This page uses 'cookies'. Learn more