Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The research was intended to develop a biocomposite as an alternative biodegradable material, for the production of, e.g., disposable utensils. The author’s tested thermoplastic maize starch, both without additives and with the addition of crumbled fl ax fi ber in the share of 10, 20 and 30 wt%. The plasticizer added was technical glycerin and the samples were produced by a single-screw extruder. The mechanical strength tests were performed, including the impact tensile test and three-point bending fl exural test. Afterwards, the samples were tested for biodegradability under anaerobic conditions. The methane fermentation process was carried in a laboratory bioreactor under thermophilic conditions with constant mixing of the batch. All samples proved to be highly susceptible to biodegradation during the experiment, regardless of the fl ax fi ber share. The biogas potential was about 600 ml·g-1, and the methane concentration in biogas ranged from 66.8 to 69.6%. It was found, that the biocomposites can be almost completely utilized in bioreactors during the biodegradation process. The energy recovery in the decomposition process with the generation of signifi cant amount of methane constitutes an additional benefi t.

Go to article

Authors and Affiliations

Gabriel Borowski
1
ORCID: ORCID
Tomasz Klepka
2
Małgorzata Pawłowska
1
Maria Cristina Lavagnolo
3
Tomasz Oniszczuk
4
Agnieszka Wójtowicz
4
Maciej Combrzyński
4

  1. Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  2. Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  3. Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
  4. Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland

This page uses 'cookies'. Learn more