Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We present the results of a numerical analysis of a two-dimensional photonic crystal with line defect for a laser gas sensor working in a slow light regime. The geometrical parameters of photonic crystals with three different line defects were numerically analyzed: a missing row of holes, a row of holes with changed diameter and air channel. Antireflection sections were also analyzed. The simulations were carried out by MEEP and MPB programs, with the aim to get the values of a group refractive index, transmission and a light-gas overlap as high as possible. The effective refractive index method was used to reduce the simulation time and required computing power. We also described numerical simulation details such as required conditions to work in the slow light regime and the analyzed parameters values’ dependency of the simulation resolution that may influence the accuracy of the results.

Go to article

Authors and Affiliations

A. Zakrzewski
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.

Go to article

Authors and Affiliations

D. Przybylski
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

Go to article

Authors and Affiliations

A. Zakrzewski
A. Pięta
S. Patela

This page uses 'cookies'. Learn more