Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of bulk deposition is an important aspect of assessing ambient air pollution. It contributes significantly to the removal of pollutants from the atmosphere and their transfer to other ecosystems. Thus, it is a reliable determinant of environmental chemistry. Therefore, bulk deposition can be considered useful for tracking the migration path of substances from different sources. The aim of the study carried out at five measurement points in Zabrze and Bytom was to assess the content of selected physico-chemical parameters in bulk deposition. Samples were collected continuously from November 2019 to November 2020. In the collected samples the following were determined: COD, pH, conductivity, dissolved organic carbon, inorganic carbon and total carbon; inorganic anions (Cl-, SO42-, NO3-, NO2-, Br-, PO43-) and cations (Li+, Mg2+, Ca2+, Na+, K+, NH4+), metals and metalloids (Mn, Ni, Co, Cu, Zn, As, Cd, Pb, Cr, and Fe), and carboxylic acids (formic, acetic, oxalic). The obtained test results were statistically processed using Excel, and the normality of data distribution was verified by Shapiro-Wilk test. The results show that pollutants transported in the atmosphere and introduced with precipitation in the Zabrze and Bytom areas are a significant source of area pollution of the region.
Go to article

Bibliography

  1. Azimi, S., Ludwig, A., Thevenot, D.R., & Colin, J.L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas, Science of the total environment, 308, 1-3, pp. 247–256. DOI:10.1016/S0048-9697(02)00678-2
  2. Czaplicka, M., Jaworek, K., & Wochnik, A. (2014). Determination of aldehydes in wet deposition, Archives of Environmental Protection, 40, 2, pp. 21–31. DOI:10.2478/aep-2014-0011
  3. D'Alessandro, W., Katsanou, K., Lambrakis, N., Bellomo, S., Brusca, L., & Liotta, M. (2013). Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric research, 132, pp. 399–410. DOI:10.1016/j.atmosres.2013.07.007
  4. EASAC – the European Academies’ Science Advisory Council (2020). Towards a sustainable future: transformative change and post-COVID-19 priorities. A Perspective by EASAC’s Environment Programme, (https://easac.eu/fileadmin/user_upload/EASAC_Perspective_on_Transformative_Change_Web_complete.pdf (12.01.2022)
  5. Fowler, J., Cohen, L., & Jarvis, P. (2013). Practical statistics for field biology, John Wiley & Sons, Hoboken 2013.
  6. Huston, R., Chan, Y.C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks, Water Research, 43, 6, pp. 1630–1640. DOI:10.1016/j.watres.2008.12.045
  7. IMGW-PIB – Institute of Meteorology and Water Management - National Research Institute (2018). Precipitation chemistry monitoring and assessment of pollutant deposition to the ground in 2016-2018. Results of monitoring studies in the Silesian Voivodeship in 2017 (in Polish), (http://www.katowice.wios.gov.pl/monitoring/informacje/stan2017/opady.pdf (12.01.2022))
  8. Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted Moss Hylocomium splendens as a Bioaccumulator of Trace Elements from Different Categories of Sampling Sites in the Upper Silesia Area (SW Poland): Bulk and Dry Deposition Impact, Bulletin of Environmental Contamination and Toxicology, 101, 24, pp. 479–485. DOI:10.1007/s00128-018-2429-y
  9. Kurwadkar, S., Kanel, S.R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants, Water Environment Research, 92, 10, pp. 1659–1668. DOI:10.1002/wer.1415
  10. Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H. (2019). A bibliometric analysis of research on acid rain, Sustainability, 11, 11, 3077. DOI:10.3390/su11113077
  11. Nowak, A., Korszun-Kłak, K., & Zielonka, U. (2014). Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM) and Hg Deposition in the Silesian Region, Poland: Concept of the Mercury Deposition Coefficient, Archives of Environmental Protection, 40, 3, pp. 43–60. DOI:10.2478/aep-2014-0023
  12. PB18 (test procedure), edition 4, 10.02.2016. The application of ICP-MS in water quality testing.
  13. Pecyna-Utylska, P., Konieczny, T., & Michalski, R. (2021). The influence of sample pH on the determination of selected carboxylic acids by isocratic ion chromatography, Chemistry & Chemical Technology, 15, 3, pp. 319–323. DOI:10.23939/chcht15.03.319
  14. Pęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokladek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia, Sustainability, 12, 11, 4793. DOI:10.3390/su12114793
  15. PN-EN 1484:1999 standard. Water Quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  16. PN-EN 27888:1999 standard. Water Quality — Determination of electrical conductivity.
  17. PN-EN ISO 10304-1:2009 standard. Water Quality — Determination of dissolved anions by liquid chromatography of ions — Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.
  18. PN-EN ISO 10523:2012 standard. Water Quality — Determination of pH.
  19. PN-EN ISO 11885:2009 standard. Water Quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  20. PN-EN ISO 14911:2002 standard. Water Quality — Determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography — Method for water and waste water.
  21. PN-ISO 15705:2005 standard. Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method.
  22. Polkowska, Z., Astel, A., Walna, B., Małek, S., Mądrzycka, K., Górecki, T., Siepak, J., & Namieśnik, J. (2005). Chemometric Analysis of Rainwater and Throughfall At Several Sites In Poland, Atmospheric Environment, 39, pp. 837–855. DOI:10.1016/j.atmosenv.2004.10.026
  23. Saadat, S., Rawtani, D., & Hussain, C.M. (2020). Environmental perspective of COVID-19, Science of the Total environment, 728, 138870. DOI:10.1016/j.scitotenv.2020.138870
  24. Sanjeeva, A., & Puttaswamaiah, S.G. (2018). Influence of Atmospheric Deposition and Roof Materials on Harvested Rainwater Quality, Journal of Environmental Engineering 144, 12, 04018121. DOI:10.1061/(ASCE)EE.1943-7870.0001460
  25. Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environmental Science and Pollution Research, 22, 14, pp. 11087–11096. DOI: 10.1007/s11356-015-4356-3
  26. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., & Ventura, F. (2018). Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). Journal of Atmospheric Chemistry, 75, 1, pp. 97–121. DOI: 10.1007/s10874-017-9365-9
  27. Wetherbee, G.A., Benedict, K.B., Murphy, S.F., & Elliott, E.M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range - Preliminary implications for Rocky Mountain National Park and interpolated deposition maps, Science of the total environment, 691, pp. 1027–1042. DOI:10.1016/j.scitotenv.2019.06.528
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the increased environmental awareness, green chemistry becomes an important element of environmental protection. Unfortunately, it generate specific environmental costs, which are related to the use of toxic chemical reagents and waste generation. The most frequently determined analytes include inorganic and organic anions and cations. The methods used so far for their analysis in water, sewage and various other types of samples are increasingly being replaced by ion chromatography methods. This paper presents the most important advantages and limitations of ion chromatography in the context of “green analytical chemistry.” The progress of ion chromatography in gradient and isocratic elution, capillary and multidimensional ion chromatography, as well as miniaturization and methods of sample preparation for analysis, which allow to classify this technique as green analytical chemistry, are described
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland

This page uses 'cookies'. Learn more