Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 32
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Enterprise innovation is currently becoming a recognized factor of the competitiveness, survival, and development of companies in the market economy. Managers still need recommendations on ways of stimulating the growth of innovation in their companies. The objective of this paper is to identify the strategic factors of enterprise innovativeness in the area of technology, defined as the most important internal factors positively impacting the innovativeness of enterprises in a strategic perspective. Empirical studies were conducted using the Computer-Assisted Web Interview (CAWI) method on a purposive sample of N = 180 small and medium-sized innovative industrial processing enterprises in Poland. Data analysis was performed using Exploratory Factor Analysis within the Confirmatory Factor Analysis framework (E-CFA) and Structural Equation Modeling (SEM). Empirical research shows that the strategic factor of enterprise innovativeness in the area of technology is technological activity. A technologically active company should (1) possess a modern machinery stock, (2) conduct systematic technological audits, and (3) maintain close technical cooperation with the suppliers of raw materials, consumables, and intermediates. The implementation of the indicated recommendations by managers should lead to increased innovativeness of small and medium-sized industrial companies. The author recommends the use of the presented research procedure and data analysis methods in further studies.
Go to article

Authors and Affiliations

Danuta Rojek
Download PDF Download RIS Download Bibtex

Abstract

Machine learning (ML) methods facilitate automated data mining. The authors compare the effectiveness of selected ML methods (RBF networks, Kohonen networks, and random forest) as modelling tools supporting the selection of materials in ecodesign. Applied in the design process, ML methods help benefit from the knowledge, experience and creativity of designers stored in historical data in databases. Implemented into a decision support system, the knowledge can be utilized – in the case under analysis – in the process of design of environmentally friendly products. The study was initiated with an analysis of input data for the selection of materials. The input data, specified in cooperation with designers, include both technological and environmental parameters which guarantee the desired compatibility of materials. Next, models were developed using selected ML methods. The models were assessed and implemented into an expert system. The authors show which models best fit their purpose and why. Models supporting the selection of materials, connections and disassembly methods help boost the recycling properties of designed products.

Go to article

Authors and Affiliations

I. Rojek
E. Dostatni
Download PDF Download RIS Download Bibtex

Abstract

An important task for present and future generations is the protection of the national cultural resources. The most attractive architectural objects of historic value include palaces, manors, castles and monasteries. Less attention is paid to educational areas, which apart from the main educational and didactic goal (positive influence on the young person's mind, shaping his personality, social integration) have a great influence on his health, the quality of his life and the shape of his environment. The example of this is the park next to the school complex in Sobieszyn, located in Lublin Voivodeship, Ułęż County. The school complex with its surrounding park established at the end of the 19 th century was given by a will of the Count Kajetan Kanty Kicki, Gozdawa coat of arms, a philantropist and a contemporary owner of Sobieszyn. Localisation of the school, far away from the centre of the village, on the slope of one of the right side tributaries of the Wieprz River – Świnka, makes it an extraordinary place, emphasising the nature values that surround it. Nowadays, the building is still a school- Kajetan Kicki Agriculture School in Sobieszyn.
Go to article

Authors and Affiliations

Krystyna Pudelska
Kamila Rojek
Download PDF Download RIS Download Bibtex

Abstract

Wraz z przemianami ogrodu naturalistycznego w XIX w. zmieniały się także elementy naturalne. W związku z niestabilną sytuacją w kraju w ciągu XIX i XX stulecia niewiele z założeń krajobrazowych przetrwało do dnia dzisiejszego. Studia nad literaturą tamtego okresu pozwolą na przybliżenie zarówno wyglądu form roślinnych jak i ich przemian. Szczególnym zainteresowaniem należy obdarzyć formy kwiatowe, ze względu na to, iż kwiaty są najdelikatniejszym i najbardziej ulotnym tworzywem ogrodowym. We wczesnych ogrodach krajobrazowych rośliny ozdobne stosowano rzadko. Stanowiły wówczas jedynie zgrabne połączenia z drzewami lub krzewami, a czasem samodzielne niewielkie klombiki lub kosze na trawniku. W II poł. XIX w. za sprawą Humphry Reptona do łask powracają regularne formy kwietników. W następstwie coraz większej różnorodności gatunkowej roślin kwiatowych ulegał y one dalszym ciągłym przemianom. Rozwój ogrodnictwa ozdobnego w Polsce przyczynił się tak że do rozkwitu ogrodów środowiskowych – ogrodów skalnych, różanych, paprociarni. Polska przeżywała w tamtym okresie renesans w architekturze krajobrazu. Powstało najwięcej parków i ogrodów. Z tego powodu prowadzenie badań nad elementami roślinnymi, a szczególnie elementami, których głównym tworzywem były kwiaty, jest niezwykle istotnym zagadnieniem.
Go to article

Authors and Affiliations

Krystyna Pudelska
Kamila Rojek
Download PDF Download RIS Download Bibtex

Abstract

Alpinarium należy traktować jako miejsce wzrostu roślin charakterystycznych dla określonych łańcuchów górskich. Stanowi on swoistą kolekcję, która pełni funkcje dydaktyczne i estetyczne. Najlepszym wzorem w tworzeniu ogrodu górskiego jest natura – krajobrazy, siedli-ska, z których pochodzą rośliny. W alpinarium, jak w każdym ogrodzie skalnym wykorzystuje się naturalną rzeźbę i właściwości terenu, bądź teren kształtuje się sztucznie zależnie od wymagań sadzonych roślin. Najczęściej tego rodzaju układy pojawiają się w ogrodach botanicznych, ale z powodzeniem mogą stanowić ciekawą kompozycję ogrodu prywatnego. Urządzenie alpinarium, by prezentował fragment naturalnego krajobrazu górskiego wymaga przede wszystkim bardzo starannego doboru: rodzaju, formy, wielkości skał, bowiem są one szkieletem ogrodu, prawidłowej selekcji gatunków wysokogórskich i zastosowania odpowiedniego podłoża.
Go to article

Authors and Affiliations

Krystyna Pudelska
Kamila Rojek
Download PDF Download RIS Download Bibtex

Abstract

This article presents a computer system for the identification of casting defects using the methodology of Case-Based Reasoning. The

system is a decision support tool in the diagnosis of defects in castings and is designed for small and medium-sized plants, where it is not

possible to take advantage of multi-criteria data. Without access to complete process data, the diagnosis of casting defects requires the use

of methods which process the information based on the experience and observations of a technologist responsible for the inspection of

ready castings. The problem, known and studied for a long time, was decided to be solved with a computer system using a CBR (CaseBased

Reasoning) methodology. The CBR methodology not only allows using expert knowledge accumulated in the implementation

phase, but also provides the system with an opportunity to "learn" by collecting new cases solved earlier by this system. The authors

present a solution to the system of inference based on the accumulated cases, in which the main principle of operation is searching for

similarities between the cases observed and cases stored in the knowledge base.

Go to article

Authors and Affiliations

K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

This work presents the project of the application of Case-based reasoning (CBR) methodology to an advisory system. This system should give an assistance by selection of proper alloying additives in order to obtain a material with predetermined mechanical properties. The considered material is silumin EN AC-46000 (hypoeutectic Al-Si alloy) that is modified by the addition of Cr, Mo, V and W elements in the range from 0% to 0.5% in the modified alloy. The projected system should indicate to the user the content of particular additives so that the obtained material is in the chosen range of parameters: tensile strength Rm, yield strength Rp0.2, elongation A and hardness HB. The CBR methodology solves new problems basing on the solutions of similar problems resolved in the past. The advantage of the CBR application is that the advisory system increases knowledge base as the subsequent use of the system. The presented design of the advisory system also considers issues related to the ergonomics of its operation.
Go to article

Authors and Affiliations

G. Rojek
K. Regulski
S. Kluska-Nawarecka
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

This article presents a practical solution in the form of implementation of agent-based platform for the management of contracts in

a network of foundries. The described implementation is a continuation of earlier scientific work in the field of design and theoretical

system specification for cooperating companies [1]. The implementation addresses key design assumptions - the system is implemented

using multi-agent technology, which offers the possibility of decentralisation and distributed processing of specified contracts and tenders.

The implemented system enables the joint management of orders for a network of small and medium-sized metallurgical plants, while

providing them with greater competitiveness and the ability to carry out large procurements. The article presents the functional aspects of

the system - the user interface and the principle of operation of individual agents that represent businesses seeking potential suppliers or

recipients of services and products. Additionally, the system is equipped with a bi-directional agent translating standards based on

ontologies, which aims to automate the decision-making process during tender specifications as a response to the request.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

The main scope of the article is the development of a computer system, which should give advices at problem of cooper alloys

manufacturing. This problem relates with choosing of an appropriate type of bronze (e.g. the BA 1044 bronze) with possible modification

(e.g. calcium carbide modifications: Ca + C or CaC2) and possible heat treatment operations (quenching, tempering) in order to obtain

desired mechanical properties of manufactured material described by tensile strength - Rm, yield strength - Rp0.2 and elongation - A5. By

construction of the computer system being the goal of presented here work Case-based Reasoning is proposed to be used. Case-based

Reasoning is the methodology within Artificial Intelligence techniques, which enables solving new problems basing on experiences that

are solutions obtained in the past. Case-based Reasoning also enables incremental learning, because every new experience is retained each

time in order to be available for future processes of problem solving. Proposed by the developed system solution can be used by

a technologist as a rough solution for cooper alloys manufacturing problem, which requires further tests in order to confirm it correctness.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

In flowering plants, seeds are produced both sexually (double fertilization is required) and asexually via apomixis (meiotic reduction and egg fertilization are omitted). An apomictic-like pattern of endosperm development in planta is followed by fis mutants of sexual Arabidopsis thaliana. In our experiments in planta, autonomous endosperm (AE) developed in met1 mutants. Furthermore we obtained autonomous endosperm formation in vitro not only in unfertilized ovules of fie mutants but also in wild genotypes (Col-0, MET1/MET1, FIE/FIE) and met1 mutants. AE induction and development occurred in all genotypes on the each of the media used and in every trial. The frequency of AE was relatively high (51.2% ovaries) and genotype-dependent. AE induced in vitro represents a more advanced stage of development than AE induced in fie mutants in planta. This was manifested by a high number of nuclei surrounded by cytoplasm and organized in nuclear cytoplasmic domains (NCDs), nodule formation, division into characteristic regions, and cellularization. The high frequency of AE observed in homozygous met1 (met1/met1) mutants probably is due to accumulation of hypomethylation as an effect of the met1 mutation and the in vitro conditions. AE development was most advanced in FIE/fie mutants. We suggest that changes in the methylation of one or several genes in the DNA of Arabidopsis genotypes caused by in vitro conditions resulted in AE induction and/or further AE development.

Go to article

Authors and Affiliations

Joanna Rojek
Elżbieta Kuta
Małgorzata Kapusta
Anna Ihnatowicz
Jerzy Bohdanowicz
Download PDF Download RIS Download Bibtex

Abstract

The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.

Go to article

Bibliography

  1.  C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining. Springer US, 2016.
  2.  M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.
  3.  S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517–525 (2019).
  4.  O. Sagi and L. Rokach, “Ensemble learning: A survey”, Wiley Interdiscip. Rev.-Data Mining Knowl. Discov. 8(4), e1249 (2018).
  5.  R.M. Cruz, R. Sabourin, and G.D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives”, Inf. Fusion 41, 195–216 (2018).
  6.  O.A. Alzubi, J.A. Alzubi, M. Alweshah, I. Qiqieh, S. AlShami, and M. Ramachandran, “An optimal pruning algorithm of classifier ensembles: dynamic programming approach”, Neural Comput. Appl. 32, 16091–16107 (2020).
  7.  Y. Bian, Y. Wang, Y. Yao, and H. Chen, “Ensemble pruning based on objection maximization with a general distributed framework”, IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766‒3774 (2020).
  8.  R.M. Cruz, D.V. Oliveira, G.D. Cavalcanti, and R. Sabourin, “Fire-des++: Enhanced online pruning of base classifiers for dynamic ensemble selection”, Pattern Recognit. 85, 149–160 (2019).
  9.  T.T. Nguyen, A.V. Luong, M.T. Dang, A.W.-C. Liew, and J. McCall, “Ensemble selection based on classifier prediction confidence”, Pattern Recognit. 100, 107104 (2020).
  10.  Z.-L. Zhang, X.-G. Luo, S. García, J.-F. Tang, and F. Herrera, “Exploring the effectiveness of dynamic ensemble selection in the one- versus-one scheme”, Knowledge-Based Syst. 125, 53–63 (2017).
  11.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers”, Pattern Recognit. 46(12), 3412–3424 (2013).
  12.  M. Pawlicki, A. Giełczyk, R. Kozik, and M. Choraś, “Faultprone software classes recognition via artificial neural network with granular dataset balancing”, in International Conference on Computer Recognition Systems 2019, Springer, 2019, pp. 130–140.
  13.  D. Rajeev, D. Dinakaran, and S. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of aisi4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553–559 (2017).
  14.  D. Więcek, A. Burduk, and I. Kuric, “The use of ann in improving efficiency and ensuring the stability of the copper ore mining process”, Acta Montanistica Slovaca 24(1), 1‒14 (2019).
  15.  P. Raja, R. Malayalamurthim, and M. Sakthivel, “Experimental investigation of cryogenically treated hss tool in turning on aisi1045 using fuzzy logic–taguchi approach”, Bull. Pol. Ac.: Tech. 67(4), 687–696 (2019).
  16.  T. Andrysiak and L. Saganowski, “Anomaly detection for smart lighting infrastructure with the use of time series analysis”, J. UCS 26(4), 508–527 (2020).
  17.  A. Burduk, K. Musiał, J. Kochańska, D. Górnicka, and A. Stetsenko, “Tabu search and genetic algorithm for production process scheduling problem”, LogForum 15, 181–189 (2019.
  18.  M. Choraś, M. Pawlicki, D. Puchalski, and R. Kozik, “Machine learning–the results are not the only thing that matters! what about security, explainability and fairness?”, in International Conference on Computational Science, Springer, 2020, pp. 615–628.
  19.  P. Zarychta, P. Badura, and E. Pietka, “Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis”, Bull. Pol. Ac.: Tech. 65(1), 63–70 (2017).
  20.  I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of technological processes with the use of decision trees method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 2017, Springer, 2018, pp. 318–327.
  21.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Ac.: Tech. 68(2), 199–206 (2020).
  22.  P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Ac.: Tech. 68(2), 191–198 (2020).
  23.  S. Igari, F. Tanaka, and M. Onosato, “Customization of a micro process planning system for an actual machine tool based on updating a machining database and generating a database-oriented planning algorithm”, Trans. Inst. Syst. Control Inform. Eng. 26(3), 87–94 (2013).
  24.  C. Tan and S. Ranjit, “An expert carbide cutting tools selection system for cnc lathe machine”, Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012).
  25.  I. Rojek, “Technological process planning by the use of neural networks”, AI EDAM – AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. 31(1), 1–15 (2017).
  26.  P. Heda, I. Rojek, and R. Burduk, “Dynamic ensemble selection – application to classification of cutting tools”, in International Conference on Computer Information Systems and Industrial Management LNCS(12133), Springer, 2020, pp. 345–354.
  27.  L.I. Kuncheva, Combining Pattern Classifiers. John Wiley & Sons, Inc., 2014.
  28.  E. Santucci, L. Didaci, G. Fumera, and F. Roli, “A parameter randomization approach for constructing classifier ensembles”, Pattern Recognit. 69, 1–13 (2017).
  29.  M. Mohandes, M. Deriche, and S. O. Aliyu, “Classifiers combination techniques: A comprehensive review”, IEEE Access 6, 19626–19639 (2018).
  30.  J. Yan, Z. Zhang, K. Lin, F. Yang, and X. Luo, “A hybrid scheme-based one-vs-all decision trees for multi-class classification tasks”, Knowledge-Based Syst. 198. 105922 (2020).
  31.  P. Chaitra and R.S. Kumar, “A review of multi-class classification algorithms”, Int. J. Pure Appl. Math. 118(14), 17–26 (2018).
  32.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview of ensemble methods for binary classifiers in multi- class problems: Experimental study on onevs-one and one-vs-all schemes”, Pattern Recognit. 44(8), 1761–1776 (2011).
  33.  R. Burduk, “Integration base classifiers based on their decision boundary”, in International Conference on Artificial Intelligence and Soft Computing, Springer, 2017, pp. 13–20.
  34.  M.P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, Willey, 2010.
  35.  M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Inf. Process. Manage. 45, 427–437 (2009).
  36.  I. Rojek, “Classifier models in intelligent capp systems”, in Man-Machine Interactions, pp. 311–319, Springer, 2009.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Robert Burduk
2
ORCID: ORCID
Paulina Heda
2

  1. Institute of Computer Science, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Electronic, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to design and implement a computer system, which will allow the semantic cataloging and data retrieval in the

field of cast iron processing. The intention is to let the system architecture allow for consideration of data on various processing techniques

based on the information available or searched by a potential user. This is achieved by separating the system code from the knowledge of

the processing operations or from the chemical composition of the material being processed. This is made possible by the creation and

subsequent use of formal knowledge representation in the form of ontology. So, any use of the system is associated with the use of

ontologies, either as an aid for the cataloging of new data, or as an indication of restrictions imposed on the data which draw user attention.

The use of formal knowledge representation also allows consideration of semantic meaning, a consequence of which may be, for example,

returning all elements in subclasses of the searched process class or material grade.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
T. Wawrzaszek
Download PDF Download RIS Download Bibtex

Abstract

The problem of materials selection in terms of their mechanical properties during the design of new products is a key issue of design. The

complexity of this process is mainly due to a multitude of variants in the previously produced materials and the possibility of their further

processing improving the properties. In everyday practice, the problem is solved basing on expert or designer knowledge. The paper is the

proposition of a solution using computer-aided analysis of material experimental data, which may be acquired from external data sources.

In both cases, taking into account the rapid growth of data, additional tools become increasingly important, mainly those which offer

support for adding, viewing, and simple comparison of different experiments. In this paper, the use of formal knowledge representation in

the form of an ontology is proposed as a bridge between physical repositories of data in the form of files and user queries, which are

usually formulated in natural language. The number and the sophisticated internal structure of attributes or parameters that could be the

criteria of the search for the user are an important issue in the traditional data search tools. Ontology, as a formal representation of

knowledge, enables taking into account the known relationships between concepts in the field of cast iron, materials used and processing

techniques. This allows the user to receive support by searching the results of experiments that relate to a specific material or processing

treatment. Automatic presentation of the results which relate to similar materials or similar processing treatments is also possible, which

should make the conducted analysis of the selection of materials or processing treatments more comprehensive by including a wider range

of possible solutions.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
G. Polek
Download PDF Download RIS Download Bibtex

Abstract

The objective of studies presented in this publication was structuring of research knowledge about the ADI functional properties and

changes in these properties due to material treatment. The results obtained were an outcome of research on the selection of a format of

knowledge representation that would be useful in further work aiming at the design, application and implementation of an effective system

supporting the decisions of a technologist concerning the choice of a suitable material (ADI in this case) and appropriate treatment process

(if necessary). ALSV(FD) logic allows easy modelling of knowledge, which should let addressees of the target system carry out

knowledge modelling by themselves. The expressiveness of ALSV (FD) logic allows recording the values of attributes from the scope of

the modelled domain regarding ADI, which is undoubtedly an advantage in the context of further use of the logic. Yet, although the logic

by itself does not allow creating the rules of knowledge, it may form a basis for the XTT format that is rule-based notation. The difficulty

in the use of XTT format for knowledge modelling is acceptable, but formalism is not suitable for the discovery of rules, and therefore the

knowledge of technologist is required to determine the impact of process parameters on values that are functional properties of ADI. The

characteristics of ALSV(FD) logic and XTT formalism, described in this article, cover the most important aspects of a broadly discussed,

full evaluation of the applicability of these solutions in the construction of a system supporting the decisions of a technologist.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
W.T. Adrian
Download PDF Download RIS Download Bibtex

Abstract

One way to ensure the required technical characteristics of castings is the strict control of production parameters affecting the quality of

the finished products. If the production process is improperly configured, the resulting defects in castings lead to huge losses. Therefore,

from the point of view of economics, it is advisable to use the methods of computational intelligence in the field of quality assurance and

adjustment of parameters of future production. At the same time, the development of knowledge in the field of metallurgy, aimed to raise

the technical level and efficiency of the manufacture of foundry products, should be followed by the development of information systems

to support production processes in order to improve their effectiveness and compliance with the increasingly more stringent requirements

of ergonomics, occupational safety, environmental protection and quality. This article is a presentation of artificial intelligence methods

used in practical applications related to quality assurance. The problem of control of the production process involves the use of tools such

as the induction of decision trees, fuzzy logic, rough set theory, artificial neural networks or case-based reasoning.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
K. Jaśkowiec
A. Smolarek-Grzyb
Download PDF Download RIS Download Bibtex

Abstract

This article presents the methodology for exploratory analysis of data from microstructural studies of compacted graphite iron to gain

knowledge about the factors favouring the formation of ausferrite. The studies led to the development of rules to evaluate the content of

ausferrite based on the chemical composition. Data mining methods have been used to generate regression models such as boosted trees,

random forest, and piecewise regression models. The development of a stepwise regression modelling process on the iteratively limited

sets enabled, on the one hand, the improvement of forecasting precision and, on the other, acquisition of deeper knowledge about the

ausferrite formation. Repeated examination of the significance of the effect of various factors in different regression models has allowed

identification of the most important variables influencing the ausferrite content in different ranges of the parameters variability.

Go to article

Authors and Affiliations

K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
G. Gumienny
B. Kacprzyk
B. Mrzygłód

This page uses 'cookies'. Learn more