Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper, the logarithmic mean temperature difference method is used to determine the heat power of a tube-in-tube exchanger. Analytical solutions of the heat balance equations for the exchanger are presented. The considerations are illustrated by an example solution of the problem. In particular, the heat power of the tube-in-tube heat exchanger is determined taking into account the variants of work in the co-current and counter-current mode. Apart from the analytical solutions, appropriate numerical calculations in Matlab environment have been carried out.
Przejdź do artykułu

Bibliografia

[1] Andrzejczyk R., Muszynski T.: Thermal and economic investigation of straight and U-bend double tube heat exchanger with coiled wire turbulator. Arch. Thermodyn. 40(2019), 2, 17–33.
[2] Bury T., Składzien J., Widziewicz K.: Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions. Arch. Thermodyn. 31(2010), 4, 133–144.
[3] Hobler T.: Heat Transfer and Exchangers. Warszawa 1971 (in Polish).
[4] Kuppan T.: Heat Exchanger Design Handbook (2nd Edn.). CRC Press Taylor & Francis Group, Boca Raton 2013.
[5] Nitsche M., Gbadamosi R.O.: Heat Exchanger Design Guide. Elsevier, New York 2016.
[6] Pakowski Z., Adamski R.: Fundamentals of MATLAB in Process Engineering. Lodz Univ. Technol. Press, Łódz 2014 (in Polish).
[7] Roetzel W., Luo X.: Thermal analysis of heat exchanger networks. Arch. Thermodyn. 26(2005), 1, 5–16.
[8] Shah R.K., Sekulic D.P.: Fundamentals of Heat Exchanger Ddesign. Wiley, Hoboken 2003.
[9] Smith E.M.: Thermal Design of Heat Exchangers. A Numerical Approach: Direct- Sizing and Step-Wise Rating. Wiley, Chichester 1997.
[10] Taler D.: Numerical Modeling and Experimental Testing of Heat Exchangers. Springer, Berlin 2018.
Przejdź do artykułu

Autorzy i Afiliacje

Kazimierz Rup
1

  1. Cracow University of Technology, al. Jana Pawła II 37, Cracow, Poland

Abstrakt

The paper present the determination of the state parameters of natural gas at the pipeline inlet based on knowledge of the pressure and temperature at the receiving point. Natural gas transport will be carried out through an offshore section of a transmission pipeline. The equations of the Fanno flow model will be used to describe the thermodynamic parameters of the gas in the flow lines. The mathematical equations of the flow mentioned above models have been derived from an analysis of the mass, energy and momentum balance equations. They also take into account the viscous friction forces in the transported gas. Based on the carried out calculations, changes in the Mach number, pressure and velocity of methane transported along the analysed pipeline were determined. In addition, the total entropy gain in the analysed methane flow was determined. The novelty of the calculations presented is the use of the Fanno flow model, which considers a realistic adiabatic gas flow. This is in contrast to the isothermal flow model, which assumes an unchanging temperature of the transported gas. In the case under consideration, the adopting model was possible because of the similar temperature values of the gas flowing in the pipeline and the corresponding temperature values of the surrounding seawater. The fundamental advantage of the Fanno flow model is that it satisfies the mass balance of the flowing gas in each cross-section. Thus, the product of the velocity and density of the gas in a pipeline of constant diameter assumes a constant value.
Przejdź do artykułu

Autorzy i Afiliacje

Kazimierz Rup
1
Tomasz Sobota
2

  1. Rup, Kazimierz: Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  2. Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland

Abstrakt

This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
Przejdź do artykułu

Autorzy i Afiliacje

Kazimierz Rup
Konrad Nering

Abstrakt

This paper presents the numerical solution to the unsteady natural convection problem in micropolar fluid in the vicinity of a vertical plate, heat flux of which rises suddenly at a given moment. In order to solve this problem the method of finite differences was applied. The numerical results have been presented for a range of values of the dimensionless material properties and fluid Prandtl number. The analysis of the results shows that the intensity of the heat transfer in micropolar fluid is lower compared to the Newtonian fluid.

Przejdź do artykułu

Autorzy i Afiliacje

Kazimierz Rup
Agata Dróżdż

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji