Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents new non-ionic deep eutectic solvent (DES) composed of natural and non-toxic components i.e. guaiacol, camphor and levulinic acid in 1:1:3 molar ratio as a promising absorbent for removal of selected volatile organic compounds (VOCs) including dichloromethane, toluene, hexamethyldisiloxane and propionaldehyde from model biogas. The affi nity of DES for VOCs was determined as vapour-liquid coeffi cients and the results were compared with several well-known DESs based on quaternary ammonium salt as well as n-hexadecane and water. For new DES, the absorption process was carried out under dynamic conditions. The results indicate that non-ionic DES has high affi nity and capacity for VOCs being comparable to n-hexadecane. In addition, absorbed VOCs could be easily desorbed from DES using activated carbon and absorbent could be re-use minimum fi ve times without significant loss of absorption capacity.
Go to article

Authors and Affiliations

Edyta Słupek
1
ORCID: ORCID
Patrycja Makoś
1
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The hydrolysis of lignocellulosic biomass results in the production of so-called fermentation inhibitors, which reduce the efficiency of biohydrogen production. To increase the efficiency of hydrogen production, inhibitors should be removed from aqueous hydrolysate solutions before the fermentation process. This paper presents a new approach to the detoxification of hydrolysates with the simultaneous formation of in-situ deep eutectic solvents (DES). In the first stage of the study, inhibitors were identified in the real hydrolysate samples using highperformance liquid chromatography (HPLC). Four monoterpenes were tested for their potential to extract furfural (FF) with simultaneous DES formation. An optimization process of the most important parameters affecting the extraction process and DES formation (Thymol:FF) was conducted using the Central Composite Design (CCD) model. A temperature of 40 °C, pH of 7, mHBD:mHYD ratio of 2:1, and time of 50 min were selected as the optimal conditions. These results indicate the high efficiency of FF removal from hydrolysates (92.1 - 94.6 %) in a onestep process. Meanwhile, the structural properties of the formed DES measured by Fouriertransform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance spectroscopy (NMR) differed only slightly from those of the DES composed of pure substances (Furfural and Thymol).
Go to article

Authors and Affiliations

Patrycja Makoś-Chełstowska
1
ORCID: ORCID
Edyta Słupek
1
ORCID: ORCID
Karolina Kucharska
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineeringand Chemical Technology, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Current efforts are taken to increase resource efficiency, close material loops, and improve sustainable waste and by-products management. Thus, networking agro-food by-products andc onverting them into valuable products completely exhausting the potential of the raw material becomes significant. Model lignocellulosic and starch based biomass were subjected to pre-treatment with the application of acidic compounds, i.e. sulphuric (SA) and acetic (AA) acids. The response, i.e. total sugar content and derivatives content is investigated depending on variables changed during hydrolysis: concentration of acid, process duration, temperature and the size of the biomass particles. After saccharification, the hydrolysates were analysed via HPLC. Total reducing sugars concentration was in the range of 0.1 – 15.53 g/LAmong the substances present in the hydrolysates, protein, peptides, hydroxybenzyl acid (HA), 5-HMF, furfural (FF), vanillin (V), vanillic acid (VA), formic acid (FA) and levulinic acid (LA) were found in the range of 0.44 – 9.05 g/L and determined as total derivatives concentration. The aim of the study was to evaluate the measurable effects of the research and deliver information about the statistically important parameters for the process course and relations between the variables.
Go to article

Authors and Affiliations

Karolina Kucharska
1
ORCID: ORCID
Patrycja Makoś-Chełstowska
1
ORCID: ORCID
Edyta Słupek
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more