Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Wind power integration through the voltage source converter-based high-voltage direct current (VSC-HVDC) system will be a potential solution for delivering large-scale wind power to the “Three-North Regions” of China. However, the interaction between the doubly-fed induction generator (DFIG) and VSC-HVDC system may cause the risk of subsynchronous oscillation (SSO). This paper establishes a small-signal model of the VSC based multi-terminal direct current (VSC-MTDC) system with new energy access for the problem, and the influencing factors causing SSO are analyzed based on the eigenvalue analysis method. The theoretical analysis results show that the SSO in the system is related to the wind farm operating conditions, the rotor-side controller (RSC) of the DFIG and the interaction of the controller in the VSC-MTDC system. Then, the phase lag characteristic is obtained based on the signal test method, and a multi-channel variable-parameter subsynchronous damping controller (SSDC) is designed via selecting reasonable parameters. Finally, the correctness of the theoretical analysis and the effectiveness of the multi-channel variable-parameter SSDC are verified based on time-domain simulation.
Go to article

Bibliography

[1] Tang G.F., HVDC based on voltage source converter, China Electric Power Press (2010).
[2] Li C.S., Li Y.K., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 61, no. 1, pp. 5–21(2020).
[3] Liu T.Q., Tao Y., Li B.H., Critical problems of wind farm integration via MMC-MTDC system, Power System Technology, vol. 41, no. 10, pp. 3251–3260 (2017).
[4] Wu J.H., Ai Q., Research on multi-terminal VSC-HVDC system for wind-farms, Power System Technology, vol. 33, no. 4, pp. 22–27 (2009).
[5] Chen C., Du W.J., Wang H.F., Review on mechanism of sub-synchronous oscillations caused by gridconnected wind farms in power systems, Southern Power System Technology, vol. 12, no. 1, pp. 84–93 (2018).
[6] Amin M., Molinas M., Understanding the origin of oscillatory phenomena observed between wind farms and HVDC systems, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 378–392 (2017).
[7] Wang W.S., Zhang C., He G.Q., Li G.H., Zhang J.Y., Wang H.J., Overview of research on subsynchronous oscillations in large-scale wind farm integrated system, Power System Technology, vol. 41, no. 4, pp. 1050–1060 (2017).
[8] Jiang Q.R., Wang L., Xie X.R., Study on oscillations of power-electronized power system and their mitigation schemes, High Voltage Engineering, vol. 43, no. 4, pp. 1057–1066 (2017).
[9] Xie X.R., Liu H.K., He J.B., Liu H., Liu W., On new oscillation issues of power system, Proceedings of the CSEE, vol. 38, no. 10, pp. 2821–2828+3133 (2018).
[10] Wang L., Yang Z.H., Lu X.Y., Prokhorow A.V., Stability analysis of a hybrid multi-infeed HVDC system connected between two offshore wind farms and two power grids, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1824–1833 (2017).
[11] Kunjumuhammed L.P., Pal B.C., Oates C., Dyke K.J., Electrical oscillations in wind farm systems: analysis and insight based on detailed modeling, IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 51–61 (2016).
[12] Sun K., Yao W., Wen J.Y., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Proceedings of the CSEE, vol. 38, no. 22, pp. 6520–6533 (2018).
[13] Song S.H., Zhao S.Q., Analysis of sub-synchronous oscillation of DFIG-based Wind Farm integrated to grid through VSC-HVDC system based on torque method, Power System Technology, vol. 44, no. 2, pp. 630–636 (2020).
[14] Bian X.Y., Ding Y., Mai K., Zhou Q., Zhao Y., Tang L., Sub-Synchronous oscillation caused by grid-connection of offshore wind farm through VSC-HVDC and its mitigation, Automation of Electric Power Systems, vol. 42, no. 17, pp. 25–39 (2018).
[15] Lyu J., Dong P., Shi G., Cai X., Li X.L., Subsynchronous oscillation and its mitigation of MMC-based HVDC with large doubly-fed induction generator-based wind farm integration, Proceedings of the CSEE, vol. 35, no. 19, pp. 4852–4860 (2015).
[16] Lyu J., Cai X., Amin M., Molinas M., Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms, IET Generation, Transmission and Distribution, vol. 12, no. 4, pp. 1021–1029 (2018).
[17] Shao B.B., Zhao S.Q., Pei J.K., Li R., Subsynchronous oscillation characteristics analysis of gridconnected direct-drive wind farms via VSC-HVDC system, Power System Technology, vol. 43, no. 9, pp. 3344–3355 (2019).
[18] Chen B.P., Study on characteristics and suppression of sub/super-synchronous oscillation caused by power system with D-PMSG and VSC-HVDC, Wuhan University (2018).
[19] Guo X.S., Li Y.F., Xie X.T., Hou Y.L., Zhang D., Sub-synchronous oscillation characteristics caused by PMSG-based wind plant farm integrated via flexible HVDC system, Proceedings of the CSEE, vol. 40, no. 4, pp. 1149–1160+1407 (2020).
[20] Sun K., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Huazhong University of Science and Technology (2018).
[21] He J., Li Q., Qin S.Y., Wang R.M., DFIG wind turbine modeling and validation for LVRT behavior, IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1–5 (2012).
[22] Lu X.J., Lin W.X., Wen J.Y., Li Y.F., Wu Y.L., An T., Modularized small signal modeling method for DC grid, Proceedings of the CSEE, vol. 36, no. 11, pp. 2880–2889 (2016).
[23] Kalcon G.O., Adam G.P., Anaya-Lara O., Lo S., Uhlen K., Small-signal stability analysis of multiterminal VSC-based DC transmission systems, IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1818–1830 (2012).
[24] Zhou G.L., Shi X.C., Fu Ch.,Wei X.G., Zhu X.R., VSC-HVDC discrete model and its control strategy under unbalanced input voltage, Transactions of China Electrotechnical Society, vol. 23, no. 12, pp. 137–143+159 (2008).
[25] Gao B.F., Zhao C.Y., Xiao X.N., Yin W.Y., Guo C.L., Li Y.N., Design and implementation of SSDC for HVDC, High Voltage Engineering, vol. 36, no. 2, pp. 501–506 (2010).
[26] Jiang P., Hu T., Wu X., VSC-HVDC multi-channel additional damping control suppresses subsynchronous oscillation, Electric Power Automation Equipment, vol. 31, no. 9, pp. 27–31 (2011).
Go to article

Authors and Affiliations

Miaohong Su
1
ORCID: ORCID
Haiying Dong
1 2
Kaiqi Liu
1
Weiwei Zou
1

  1. School of Automatic and Electrical Engineering, Lanzhou Jiaotong University, China
  2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, China

This page uses 'cookies'. Learn more