Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the Mardin-Mazıdağı region, which corresponds to the northern Arabian Plate, layers containing marine phosphorite rocks are found within the Karababa Formation (Upper Cretaceous). The Karataş member contains phosphorites and carbonate rocks with nodular chert geodes and fossils.
The phosphorite and micritic limestones contain invertebrate fossil fragments and materials such as optical isotropic pelletic apatite minerals, angular/subangular and plated fish bone fragments, and brachiopod shells. SEM (scanning electron microscopy) results show that the apatite minerals are either spherical or ellipsoidal in shape and their size varies between 100–200 μm. According to X-ray diffraction (XRD) examinations, the rocks contain apatite (carbonate rich fluorapatite; CFA), carbonate (calcite, dolomite), silica (quartz and opal-CT), little feldspar, and clay (smectite, palygorskite/ sepiolite, kaolinite, illite, chlorite, mixed layered chlorite-vermiculite (C-V) and illite-vermiculite (I-V).
The average major and trace elements found in the phosphorite include P2O5 (35.41 wt.%), REE s (44.57 ppm), Y (52.85 ppm), and U (5.45 ppm). The Mazıdağı phosphorite analysis indicates that the conditions are slightly oxic, which is supported by their slightly negative Ce anom average values (–0.30), low Ce/La ratios (0.32), and a V/(V + Ni) mean of 0.93 ppm. All the recoded values of the average REE for the study area are considerably lower than those in Iraq (84.30 ppm), Tunisia (400.3 ppm), Morocco (571.75 ppm) and Jordan (187 ppm). It is inferred that mineral formation processes are affected by the biogenic and biogeochemical activities that occurred in conjunction with the changes in sea level driven by the tectonic conditions associated with the evolution of the Neotethys Ocean.
Go to article

Authors and Affiliations

Sema Tetiker
1
ORCID: ORCID

  1. Batman University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The mineralogy and chemistry of Upper Cretaceous-Lower Paleocene claystone sediments from Mardin and Batman, southeastern Turkey, were analyzed. The main mineral paragenesis in the Upper Cretaceous member formed chlorite-smectite (C-S) and illite, while the Lower Paleocene member occurred of chlorite-vermiculite (C-V) and vermiculite minerals. The clays were silica-poor but indicated high values of Al, Fe, Mg, Cr, Ni, V, and Zr. Lower contents of the alkali elements (Na, Ca, Mg, K) of the clayey sediments suggests a relatively denser weathering of the source area. The mineralogical compositions, major element ratios, trace, and rare earth element (REE ) contents of the sediments show that the Upper Cretaceous member consists of materials with a mainly felsic source lithology, while relatively contributions from basic sources are found in the Lower Paleocene unit. A comparison of the major and trace element contents of the phyllosilicate/clay minerals with the members revealed that the patterns of the clays were different from each other, although the enrichments/ decreases varied depending on the origin (basement rocks or detrital) of the derived rocks, minerals, and elements. REE content of clays increased from detrital to phyllosilicate/clay minerals of chemical/diagenetic/neoformation origin during the Lower Paleocene. During the Cretaceous and Tertiary periods, local or regional geodynamic and diagenetic events largely governed the rock sedimentation processes and provenance variations amongst Germav Formation members.
Go to article

Authors and Affiliations

Sema Tetiker
1
ORCID: ORCID

  1. Batman University, Turkey

This page uses 'cookies'. Learn more