Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Due to the fixed rotor magnetic field, the main magnetic flux of conventional permanent magnet synchronous motors (PMSMs) cannot be flexibly adjusted. Recently, the axial-radial flux type permanent magnet synchronous machine (ARFTPMSM) based on the hybrid excitation concept is proposed, which provides a new method for the speed and magnetic field regulations for PMSMs. To analyze the mechanism of magnetic field variation inside the ARFTPMSM, in this paper, three – dimensional finite element models for electromagnetic field calculation of the ARFTPMSM are established. On this basis, the influence of the axial device on the motor is discussed, and the mechanism of flux regulation is explained. By the quantitative calculation of air-gap flux density and the noload back-electromotive force (EMF), the flux regulation capability of the ARFTPMSM is verified. In addition, the effect of the excitation magnetomotive force on the magnetic field harmonics is analyzed combined with the winding theory, and the influence of the axial magneto-motive force (MMF) on the torque fluctuation is obtained. The flux regulation performance of the motor and the validity of the numerical calculation analysis are verified by the experiments.
Go to article

Authors and Affiliations

Cunxiang Yang
1
Kun Wang
1
ORCID: ORCID
Ziyang Liu
1
Bin Xiong
2
Qiang Zhao
3

  1. Zhengzhou University of Light Industry, Zhengzhou, Henan, China
  2. Institute of Electrical Engineering of Chinese Academy of Sciences, Beijing, China
  3. Wolong Electric Nanyang Explosion Protection Group Co., LTD.China
Download PDF Download RIS Download Bibtex

Abstract

In recent years, fractional slot concentrated winding permanent magnet synchronous motors (FSCW PMSMs) have become a hotspot in the research field. Due to the unique inductance characteristics of the FSCW PMSM, a fast and accurate calculation of the d/q-axis inductance and saliency ratio is necessary. In this paper, a method is proposed to calculate the d/q-axis reactance of the FSCW SPMSM, which constructs the equivalent magnetic circuit model of the d/q-axis armature reaction flux separately, and the saliency ratio characteristics of the FSCW SPMSM were demonstrated. In addition, to meet the high requirements of the modern industries, especially in servo systems, accurate consideration of the effect of stator resistance on torque and electromagnetic performance is important and more applicable. According to the relationship between the vector parameter, the explicit expression of the d/q-axis currents that consider the stator resistance is obtained, and the prediction of load angle at maximum electromagnetic torque is achieved. Then, combined with the finite element method, the influence mechanism of stator resistance on the motor steady-state performance is revealed. Finally, the experimental data are compared with the calculation data, and the correctness of the models and analysis was verified.
Go to article

Authors and Affiliations

Hongbo Qiu
1
Dong Wang
1
Cunxiang Yang
1
Kun Wang
1
ORCID: ORCID

  1. Zhengzhou University of Light Industry Zhengzhou, Henan, China

This page uses 'cookies'. Learn more