Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Results of toluene and p-xylene containing model gases biofiltration are presented. Process was carried out on columns packed with two kinds of non-modified composts. Velocity and efficiency of biofiltration was determined and plotted vs. impurities concentration and linear gas velocity. Highest, average for the top section of the column, values of the decomposition velocity were found to be ca. 80 g/m3 /h, and average for the whole column ca. 40 g/m3/h respectively. Fluctuations of these values at similar, well controlled, measurement parameters were however encounter, most probable due to varying hardly adjustable humidity of the column bed.
Go to article

Authors and Affiliations

Andrzej Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

Results of study on biofiltration of waste gases arising during lacquer covering of coil wires are presented. Gases contained over 50 compounds, phenol, cresols, in between. Biofiltration was carried out on compost bed at 0.28 emfs average linear velocity of gases. Efficiency of the whole process reached over 99%. Significant decrease of concentration of several compounds already in humidifier has been encountered.
Go to article

Authors and Affiliations

Andrzej Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

Fungus Fnsarium solani, able to degrade methyl isobutyl ketone was isolated from the bed ofbiofilter cleaning exhausting gases from the cable plant "Załom" near Szczecin. This substance was used as the only source of carbon and energy. Confirmation and kinetic tests were performed in 25 cm- scrubbers filed with mineral medium which was inoculated with the fungus. Fusorium solani degraded MIBK at the rate up to 60 g·m3·h·1 and pollution loading up to 200 gm+h'. Degree of elimination ranged from 40 to 80% and decreased when culture pollution loading increased.
Go to article

Authors and Affiliations

Krystyna Przybulewska
Andrzej N. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

Pojęcie równowagi stanowi punkt odniesienia do badania innych pojęć, pokrewnych i nie tylko, w szczególności pojęć efektywności i stabilności.
Go to article

Authors and Affiliations

Andrzej Wieczorek
Marcin Malawski
Download PDF Download RIS Download Bibtex

Abstract

Among the elements that compose steel slags and blast furnace slags, metallic precipitates occur alongside the dominant glass and crystalline phases. Their main component is metallic iron, the content of which varies from about 90% to 99% in steel slags, while in blast furnace slags the presence of precipitates was identified with the proportion of metallic iron amounting to 100%. During observations using scanning electron microscopy and X-ray spectral microanalysis it has been found that the form of occurrence of metallic precipitates is varied. There were fine drops of metal among them, surrounded by glass, larger, single precipitates in a regular, spherical shape, and metallic aggregates filling the open spaces between the crystalline phases. Tests carried out for: slags resulting from the open-hearth process, slags that are a by-product of smelting in electric arc furnaces, blast furnace slags and waste resulting from the production of ductile cast iron showed that depending on the type of slag, the proportion and form of metallic precipitates is variable and the amount of Fe in the precipitates is also varied. Research shows that in terms of quality, steel and blast furnace slag can be a potential source of iron recovery. However, further quantitative analyses are required regarding the percentage of precipitates in the composition of slags in order to determine the viability of iron recovery. This paper is the first part of a series of publications aimed at understanding the functional properties of steel and blast furnace slags in the aspect of their destructive impact on the components of devices involved in the process of their processing, which is a significant operational problem.

Go to article

Authors and Affiliations

Andrzej Norbert Wieczorek
Iwona Jonczy
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with issues related to tribological processes occurring as a result of excessive wear of the surface of scraper conveyor components caused by the impact of the mined material created during drilling of development or exploitation galleries. One of the most common types of tribological wear is abrasive wear. W ear tests were carried out for hard coal – based abrasive using dry carbon abrasive and a hydrated mixture with 76 and 58% hard coal. Based on the conducted research, it was established that the effects of wear processes are associated with damage typical of wear mechanisms: micro-scratching and micro-fatigue. For the wear variant in the presence of dry coal abrasive, individual scratches caused by the abrasive grains were observed on the surface of the samples. The main reason for this type of damage was the aggregation of quartz, which is one of the basic components of the mineral substance present in the tested hard coal. When hydrated carbon mixtures were used as an abrasive, the surface of the samples also displayed scratches characteristic of the aggregate quartz. A small part of the carbon abrasive was pressed into the scratches. Under the influence of the wear caused by friction, small depressions were also formed, where coal penetrated. The effect of coal pressing into micro-scratches is related to its plastic properties. T ests of the abrasive conducted after the conclusion of wear tests have shown that under the influence of the local increase in temperature and pressure, the hard coal contained in the abrasive can undergo transformations. In the abrasive transformed under friction, small, but measurable changes in the content of the C element in relation to the initial hard coal sample were exhibited.

Go to article

Authors and Affiliations

Iwona Jonczy
ORCID: ORCID
Andrzej N. Wieczorek
Jacek Podwórny
Anna Gerle
Marcin Staszuk
ORCID: ORCID
Jacek Szweblik
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of studies into the phase and chemical composition of blast furnace slag in the context of its reuse. In practice, blast furnace slags are widely used in the construction industry and road building as a basis for the production of, for example, cements, road binders and slag bricks. T hey are also used in the production of concrete floors, mortars, and plasters. Blast furnace slag is mainly used as a valuable material in the production of hydraulic binders, especially cement that improves the mechanical properties of concretes.
The favorable physical and mechanical properties of slags, apart from economic aspects, are undoubtedly an asset when deciding to use them instead of natural raw materials. In addition to the above, there is also the ecological aspect, since by using waste materials, the environmental interference that occurs during the opencast mining of natural aggregates is reduced. S pecifically, this means waste utilization through secondary management.
However, it should be kept in mind that it is a material which quite easily and quickly responds to environmental changes triggered by external factors; therefore, along with the determination of its physical and mechanical properties, its phase and chemical composition must be also checked.
The studies showed that the predominant component of the blast furnace slag is glass which can amount up to 80%. In its vicinity, metallic precipitate as well as crystallites of periclase, dicalcium silicates and quartz can be found. With regard to the chemical composition of the slag, it was concluded that it meets the environmental and technical requirements regarding unbound and hydraulically bound mixtures. In case of the latter, in terms of its chemical composition, the slag meets the hydraulic activity category CA3. It also meets the chemical requirements for using it as a valuable addition to mortars and concretes, and it is useful in the production of CEM II Portland-composite cement, CEM III blast-furnace cement and CEM V composite cements. The blast furnace slag is a valuable raw material for cement production. Cement CEM III/C contains 81–95% of blast furnace slag in accordance with E N 197-1:2012. In 2019, the Polish cement industry used 1,939,387.7 tons of slag.
Go to article

Authors and Affiliations

Iwona Jonczy
1
ORCID: ORCID
Bartłomiej Grzesik
2
ORCID: ORCID
Andrzej Norbert Wieczorek
1
Anna Gerle
3
Paweł Nuckowski
4
Marcin Staszuk
4
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Gliwice, Poland
  2. Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
  3. Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Poland
  4. Silesian University of Technology, Faculty of Mechanical Engineering, Gliwice, Poland

This page uses 'cookies'. Learn more