Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ligninolytic enzymes are employed for the production of second-generation biofuel to minimize fuel crisis. Additionally, they play a crucial role in global carbon cycle and a variety of applications in food, agriculture, paper and textile industries. On a large scale production of ligninolytic enzymes, microorganisms can be cultured on lignocellulosic wastes. In the present study, proximate analysis including acid detergent lignin (ADL), acid detergent cellulose (ADC), acid detergent fi ber (ADF) and acid insoluble ash (AIA) were performed for Platanus orientalis (chinar), Bauhinia variegata (orchid tree), Pinus roxburghii (chir pine), wheat straw and wheat husk. Platanus orientalis was selected as substrate because of higher lignin contents for the production of ligninolytic enzymes by Aspergillus flavus. Solid State Fermentation was used and Response Surface Methodology was employed for optimizing various parameters and enzymes production. Maximum production was achieved at temperature 32°C, fermentation period 120 hours, pH 4.5, inoculums size 3.5 mL, substrate mesh size 80 mm, substrate size 7 g. Maximum purifi cation of laccase, manganese peroxidase (MnP) and lignin peroxidase (LiP) was achieved with 50%, 60% and 40% ammonium sulfate respectively and it was enhanced by gel filtration chromatography. Characterization of enzymes shows that Laccase has 35°C optimum temperature, 4.5 pH, 0.289 mM Km and 227.27 μM/ml Vmax. Manganese peroxidase has 30°C optimum temperature, 5.5 pH, 0.538 mM Km and 203.08 μM/ml Vmax. Lignin peroxidase has 30°C optimum temperature, 3 pH, 2 mM Km and 2000 µM/ml Vmax. Protein concentrations found in crude extracts and partially purified enzymes are respectively: laccase 1.78 and 0.71 mg/ml, MnP 1.59 and 0.68 mg/ml. LiP, 1.70 and 0.69 mg/ml.
Go to article

Authors and Affiliations

Jehangir Khan
1 3
Muahammad Javaid Asad
1
Raja Tahir Mahmood
2
Feeroza Hamid Wattoo
1
Tayyaba Zainab
1
Sidrah Nazir
1
Muhammad Basir Shah
4
Dawood Ahmed
5

  1. University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  2. Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
  3. Department of Biosciences, University of WAH, WAH Pakistan
  4. Department of Plant Breeding & Genetics, Balochistan Agriculture College Quetta, Pakistan
  5. Department of Medical Laboratory Technology, Haripur University, Haripur, KPK, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The current study was aimed to evaluate the industrial effl uents biodegradation potential of an indigenous microorganism which reduced water pollution caused by these effl uents. In the present study biodegradation of three textile industrial effl uents was performed with locally isolated brown rot fungi named Coniophora puteana IEBL-1. Response Surface Methodology (RSM) was employed under Box Bhenken Design (BBD) for the optimization of physical and nutritional parameters for maximum biodegradation. Quality of treated effl uents was checked by study of BOD, COD and analysis through HPLC. Three ligninolytic enzymes named lignin peroxidase, manganese peroxidase and laccase were also studied during the biodegradation process. The results showed that there was more than 85% biodegradation achieved for all three effl uents with decrease in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) below the recommended values for industrial effl uent i.e. 80 mg/L for BOD and 220 mg/L for COD after optimization of nutritional parameters in the second stage. Analysis of samples through HPLC revealed the formation of less toxic diphenylamine, 3-methyldiphenylamine and N-methylaniline after treatment. The ligninolytic enzymes assays confi rmed the role of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in biodegradation process. Lignin peroxidase with higher activity has more contribution in biodegradation of effl uents under study. It can be concluded through the results that Coniophora buteana IEBL-1 is a potential fungus for the treatment of industrial effluents.

Go to article

Authors and Affiliations

Raja T. Mahmood
Muhammad J. Asad
Muhammad Asgher
Tayyaba Zainab
Mudassar Zafar
Saqib H. Hadri
Imran Ali
Nasib Zaman
Feroza H. Wattoo

This page uses 'cookies'. Learn more