Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the water resources of the Krężniczanka River catchment. The catchment with an area of 224.9 km2 is located south-west of Lublin. The characteristics of the groundwaters and runoff were determined based on hydrological and hydrogeological materials of the Department of Hydrology of the Maria Curie-Skłodowska University (UMCS). Mean runoff in the period from 2010 to 2016 amounted to 125.7 mm, precipitation 629.4 mm, and evapotranspi-ration 503.7 mm. A strong relationship was determined between the rhythm of runoff and ground-water level fluctuations. The contribution of groundwater supply in total runoff equalled 81.5%.
Go to article

Authors and Affiliations

Zdzisław Michalczyk
Stanisław Chmiel
Sławomir Głowacki
Joanna Sposób
Beata Zielińska
Download PDF Download RIS Download Bibtex

Abstract

Lublin Upland and Roztocze region are known for the occurrence of a large number of springs of high yield. These springs are fed mainly from Cretaceous or Tertiary water-bearing horizon. In order to determine variability of springs’ yield, 61 selected springs were analysed in spring periods of the years 1998–2008. Collected hydrometric materials allowed for comparing average and extreme yield values of springs in various physiographic regions within the period of 11 years. Average value was 76.1 dm3·s–1, while the mean of the minimal yields was 44.7 dm3·s–1 and of the maximal – 132.7 dm3·s–1. Coefficient of irregularity of the springs’ yield ranged from 1.5 to 5.0, which may lead to the conclusion that the springs’ yield is constant or varies slightly. In some cases the irregularity was higher but it was determined by hydrogeological, meteorological and local factors.

Go to article

Authors and Affiliations

Zdzisław Michalczyk
Stanisław Chmiel
Sławomir Głowacki
Beata Zielińska
Download PDF Download RIS Download Bibtex

Abstract

Tris(8-hydroxyquinoline)aluminium with poly(N-vinylcarbazole) (Alq 3:PVK) or polystyrene sulfonate (Alq 3:PSS) were deposited by spin-coating on glass and silicon substrates. SEM measurements show that relatively smooth thin films were obtained. Fourier transform infrared measurements were performed to confirm the composition of the samples. The optical properties of thin films containing Alq 3:PVK and Alq 3:PSS were characterised using absorption spectroscopy and spectroscopic ellipsometry. It was found that the absorption spectrum of Alq 3:PVK is characterised by four bands, while for Alq 3:PSS only three bands are visible. The photoluminescence of the studied thin layers shows a peak with a maximum at about 500 nm. Additionally, cyclic voltammetry of Alq 3 is also presented. Theoretical density functional theory calculations provide the insight into the interaction and nature of Alq 3:PVK and Alq 3:PSS excited states. Finally, the organic light-emitting diode (OLED) structure based on Alq 3:PVK was fabricated and showed strong electro-luminescence with a green emission at 520 nm. The results of the device show that the ITO/PEDOT:PSS/Alq 3:PVK/Ca/Al system can be useful for the production of low-cost OLEDs with Alq 3:PVK as an active layer for future lighting applications.
Go to article

Authors and Affiliations

Małgorzata Sypniewska
1
ORCID: ORCID
Monika Pokladko-Kowar
2
ORCID: ORCID
Anna Kaczmarek-Kedziera
3
ORCID: ORCID
Iulia E. Brumboiu
1
ORCID: ORCID
Viviana Figà
4
ORCID: ORCID
Aleksandra Apostoluk
5
ORCID: ORCID
Peng Song
6 7
Junyan Liu
6 8
ORCID: ORCID
Robert Szczesny
9
ORCID: ORCID
Ewa Gondek
2
ORCID: ORCID
Beata Derkowska-Zielinska
1
ORCID: ORCID

  1. Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, Torun 87-100, Poland
  2. Department of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Krakow, Poland
  3.  Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun 87-100, Poland
  4. Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Parco d’Orleans II, 90128 Palermo, Italy
  5. Université de Lyon, INSA Lyon, ECL, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, France
  6. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
  7. School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
  8. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
  9. Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Torun 87-100, Poland

This page uses 'cookies'. Learn more