Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Sapropel is a layer of sediment composed of organic and inorganic substances that accumulates at the bottom of lakes. The water of such lakes often have elevated levels of heavy metals such as Cd, Cr, Cu, and Zn, which can pose risks to human health. Sapropel may be used as a biosorbent in removing these heavy metals from aqueous solutions. Various doses of sapropel ranging from 1 to 50 g/L and different mixing times from15 to150 minutes have been tested. The maximum removal efficiencies for Cd (93%), Cr (31%), Cu (84%), and Zn (84%) from aqueous solutions were achieved using the minimum doses of sapropel (50 g/L). The study has shown that mixing sapropel for 15 minutes is sufficient for the removal of Cr, 30 minutes for Cd and Cu, and 60 minutes for Zn.
Go to article

Bibliography

  1. Al-Saydeh, S.A., El-Naas, M.H. & Zaidi, S.J. (2017). Copper removal from industrial wastewater: A comprehensive review, Journal of Industrial and Engineering Chemistry, 56, pp. 35–44. DOI:10.1016/j.jiec.2017.07.026
  2. Baksiene, E. & Ciunys, A. (2012). Dredging of lake and application sapropel from improvement of light soil properties, Journal of Environment Engineering and Landscape Management, 20, 2, pp. 97-103. DOI: org/10.3846/16486897.2011.645824
  3. Barany, S. & Strelko, V. (2013). Laws and mechanism of adsorption of cations by different ion-exchange forms of silica gel, Adsorption, 19, pp. 769–776. DOI:10.1007/s10450-013-9516-5 A
  4. Becic, A., Railic, B., Dublevis, R., Mitrovic, D. & Spalevis, V. (2014). Application of sapropel in agricultural production, Agriculture and Forestry, 60, 2, pp. 243-250.
  5. Birgelaite, R., Valskys, V. & Ignatavicius, G. (2016). Use of sapropel for removal of heavy metals from solution, Science – Future of Lithuania, 8, 4, pp. 388–396. DOI:10.3846/mla.2016.946
  6. Blitz, J.P., Blitz, I.P., Gunko, V. & Sheeran, D. (2006). Functionalized surfaces: silica structure and metal ion adsorption behavior. [In:] Blitz, J.P. and Gun’ko, V. (eds.) Surface chemistry in biomedical and environmental science, NATO science series, II., vol. 228, Springer, Dordrechet, pp. 337–348. DOI:10.1007/1-4020-4741-x_30
  7. Cornu, J.Y., Huguenot, D., Jézéquel, K., Lollier, M. & Lebeau, T. (2017). Bioremediation of copper-contaminated soils by bacteria, World Journal of Microbiology and Biotechnology, 33, 2, pp. 1–9. DOI:10.1007/s11274-016-2191-4
  8. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, European Union: Brussel, Belgium, 1998.
  9. Daux, V., Foucault, A., Melieres, F. & Turpin, M. (2006). Sapropel - like pliocene sediments of Sicily deposited under oxygenated bottom water, Bulletin de la Societe geologique de France, 177, 2, pp. 79–88. DOI:10.2113/gssgfbull.177.2.79
  10. Falaciński, P. & Wojtkowska, M. (2021). The use of extraction methods to assess the immobilization of metals in hardening slurries, Archives of Environmental Protection, 47,3 pp.60-70. DOI:10.24425/aep.2021.138464
  11. Filippidi, A., Triantaphyllou, M.V. & Lange, G.J. (2016). Eastern–Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep–water formation from Adriatic and Aegean Seas, Quaternary Science Reviews, 144, pp. 95–106. DOI:10.1016/j.quascirev.2016.05.024
  12. Genchi, G., Sinicropi, M.S., Lauria, G. & Carocci A. (2020). The Effects of Cadmium Toxicity, International Journal of Environmental Research and Public Health, 17, 11, 3782. DOI:10.3390/ijerph17113782
  13. Gunko, V.M., Mironyuk, I.F., Zarko, V.I. & Matkovskij, O.K. (2004). Surface electric and titration behavior of fumed oxides, Colloids Surfaces, 240, pp. 9–25. DOI:10.1016/j.colsurfa.2004.03.014
  14. Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski. A. & Mishra, P.K. (2021). A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment, Materials, 14, 16, 4702. DOI:10.3390/ma14164702
  15. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology, 7, 2, pp. 60-72. DOI:10.2478/intox-2014-0009
  16. Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M. & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review, Chemosphere, 229, pp. 142–159. DOI:10.1016/j.chemosphere.2019.04.198
  17. Lim, A.P. & Aris, A.Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater, Reviews in Environmental Science and Biotechnology, 13, 2, pp. 163–181. DOI:10.1007/s11157-013-9330-2
  18. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibrium and thermodynamics, Archives of Environmental Protection, 47,3, pp. 28-36. DOI:10.24425/aep.2021.138461
  19. Manzoor, M.M. (2020). Environmental Biotechnology: For Sustainable Future, Bioremediation and Biotechnology, 2, pp. 241-258. DOI:10.1007/978-3-030-40333-1_14
  20. Noulas, C., Tziouvalekas, M. & Karyotis, T. (2018). Zinc in soils, water and food crops, Journal of Trace Elements in Medicine and Biology, 49, pp. 252–260. DOI:10.1016/j.jtemb.2018.02.009
  21. Obuka, V., Sinka, M., Klavins, M., Stankevica, K. & Korjakins, (2015). Sapropel as a Binder: Properties and Application Possibilities for Composite Materials. 2nd International Conference on Innovative Materials, Structures and Technologies, Materials Science and Engineering, 96, pp. 1-10. DOI:10.1088/1757-899x/96/1/012026
  22. Pavesi, T. & Moreira, J.C. (2020). Mechanisms and individuality in chromium toxicity in humans, Journal of Applied Toxicology, 40, 9, pp. 1183-1197. DOI:10.1002/jat.3965
  23. Rasool, A., Farooqi, A., Xiao, T., Masood, S., Kamran, M.A. & Bibi, S. (2016). Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan, Journal of Geochemical Exploration, 169, pp. 89–99. DOI:10.1016/j.gexplo.2016.07.013
  24. Sankhla, M.S., Kumar, R. & Prasad, L. (2019). Zinc Impurity in Drinking Water and Its Toxic Effect on Human Health, Indian Internet Journal of Forensic Medicine & Toxicology, 17, 4, 84. DOI:10.5958/0974-4487.2019.00015.4
  25. Singh, K., Renu, N.A. & Agarwal M. (2017). Methodologies for removal of heavy metal ions from wastewater: an overview, Interdisciplinary Environmental Review, 18, 2, 124. DOI:10.1504/ier.2017.087915
  26. Stankevica, K., Klavins, M., Rutina, L. & Cerina, A. (2013). Lake sapropel: a valuable resource and indicator of lake development. Advances in Environment, Computational Chemistry and Bioscience, pp. 247-252.
  27. Tahoon, M.A., Siddeeg, S.M., Alsaiari, N.S., Mnif, W. & Ben Rebah, F. (2020). Effective heavy metals removal from water using nanomaterials: A review, Processes, 8, 6, pp. 1–24. DOI:10.3390/pr8060645
  28. Tomno, R.M., Nzeve, J.K., Mailu, S.N., Shitanda, D. & Waswa F. (2020). Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya, Scientific African, 9, e00539. DOI:10.1016/j.sciaf.2020.e00539
  29. World Health Organization. Guidelines for Drinking-Water Quality (2011). 4th ed, World Health Organization: Geneva, Switzerland, pp. 398–403.
Go to article

Authors and Affiliations

Ramunė Albrektienė-Plačakė
1
Dainius Paliulis
2

  1. Department of Chemistry and Bioengineering, Vilnius TECH, Lithuania
  2. Department of Environmental Protection and Water Engineering, Vilnius TECH, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The investigation of Nida Valley water aimed to assess fluctuations in physicochemical properties. In this study, environmental monitoring method was utilized to evaluate the changes in physicochemical properties of water. Over a 24-month period, from June 2021 to May 2023, a total of 228 water samples were collected from 10 sampling sites, with a monthly sampling frequency. Statistical analyses were utilized including the Shapiro–Wilk test (α = 0.05), Kruskal–Wallis test and Wilcoxon (Mann–Whitney) rank sum test (α = 0.05), Pearson correlation analysis (α = 0.001) and principal component analysis (PCA). Statistical analyses revealed significant differences between months in GW samples for for temperature, dissolved oxygen, pH, total nitrogen, total phosphorus, chloride, manganese, and zinc in GW samples and for T and DO in SW samples. Pearson correlation coefficient analysis (α = 0.001) identified strong positive correlations within the SW dataset. Similarly, significant positive correlations were observed among the GW dataset. Noteworthy positive correlations were also detected between the GW and SW datasets. Principal component analysis (PCA) revealed a substantial dissimilarity between GW2 samples compared to others, characterized by elevated manganese, iron, and Sulfate content. Two distinct groups emerged: Group 1 included samples at GW1, GW2, GW3, GW5, and SW2, while Group 2 comprised all other samples. This study demonstrated the stability in the physicochemical properties of SW and underscore a discernible correlation between the hydrochemical compositions of both SW and GW in the riparian area. Outstanding characteristics in hydrochemical component of sample waters have been indicated.
Go to article

Bibliography

  1. APHA (1998). Standard methods for the examination of water and wastewater. 20th ed. Washington, DC. American Public Health Association. ISBN 0875532357 pp. 1325
  2. Ayers, R.S. & Westcot D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rome, Italy, pp: 8-96. ISBN 92-5-102263-1
  3. Bogdał, A., Kowalik, T., Ostrowski, K. & Skowron P. (2016). Seasonal variability of physicochemical parameters of water quality on length of Uszwica river, J. Ecol. Eng. 17(1), pp. 161–170. DOI:10.12911/22998993/61206
  4. Borden, R.C., Daniel, R.A., LeBrun, L.E. & Davis, C.W. (1997). Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer, Water Resour. Res. 33, 1105–1115. DOI:10.1029/97W,R00014
  5. Borek, Ł. & Drymajło K. (2019). The role and importance of irrigation system for increasing the water resources: the case of the Nida River valley, ASP.FC. 18, 19–30. DOI:10.15576/ASP.FC/2019.18.3.19
  6. Cel, W., Kujawska, J. & Wasąg H. (2017). Impact of hydraulic fracturing on the quality of natural waters, J. Ecol. Eng. 18, pp. 63–68. DOI:10.12911/22998993/67852
  7. Chapman, D.V. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd Edn., Taylor and Francis, London, UK., pp: 626. ISBN-13: 9780419215905.
  8. Conant, B., Cherry, J.A. & Gillham, R.W. (2004). A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions, Journal of Contaminant Hydrology 73, pp. 249–279. DOI:10.1016/j.jconhyd.2004.04.001
  9. Costello, M.J., McCarthy, T.K. &, O’Farrell M.M. (1984). The stoneflies (Plecoptera) of the Corrib catchment area, Ireland, Annls Limnol. 20, 25–34. DOI:10.1051/limn/1984014
  10. Demaku, S. & Bajraktari, N. (2019). Physicochemical Analysis of the Water Wells in the Area of Kosovo Energetic Corporation (Obiliq, Kosovo), J. Ecol. Eng. 20, pp. 155–160. DOI:10.12911/22998993/109874
  11. EPA (1983). Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency pp. 491
  12. Harmancioglu, N.B., Ozkul, S.D. & Alpaslan, M.N. (1998). Water Quality Monitoring and Network Design. [In:] Harmancioglu, N.B., Singh, V.P., Alpaslan, M.N. (eds) Environmental Data Management, Water Science and Technology Library, vol 27. Springer, Dordrecht. DOI:10.1007/978-94-015-9056-3_4
  13. Khalil, B., Ouarda, T.B.M.J. & St-Hilaire, A. (2011). Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis, J. Hydrol., 405, pp. 277-287. DOI:10.1016/j.jhydrol.2011.05.024
  14. Kowalik, T., Bogdał, A., Borek, Ł. & Kogut, A. (2015). The effect of treated sewage outflow from a modernized sewage treatment plant on water quality of the Breń River, J. Ecol. Eng. 16, pp. 96–102. DOI:10.12911/22998993/59355
  15. Łajczak, A. (2004). Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida river, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR p. 1773–1783
  16. Mirabbasi, R., Mazloumzadeh, S.M. & Rahnama, M.B. (2008). Evaluation of irrigation water quality using fuzzy logic, Res. J. Environ. Sci., 2, pp. 340-352. DOI:10.3923/rjes.2008.340.352
  17. Nowobilska-Luberda, A. (2018). Physicochemical and Bacteriological Status of Surface Waters and Groundwater in the Selected Catchment Area of the Dunajec River Basin, J. Ecol. Eng. 19, pp. 162–169. DOI:10.12911/22998993/86329
  18. Phan, C.N., Strużyński, A. & Kowalik, T. (2023). Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study). Journal of water and Land development, 56 (I–III), pp, 220–234. DOI:10.24425/jwld.2023.143763
  19. Pitkin, S.E., Cherry, J.A., Ingleton, R.A. & Broholm M. (1999). Field Demonstrations Using the Waterloo Ground Water Profiler, Ground Water Monit. Remediat 19, pp. 122–131. DOI:10.1111/j.1745-6592.1999.tb00213.x
  20. Schuh, W.M., Klinkebiel, D.L., Gardner, J.C. & Meyer, R.F. (1997). Tracer and nitrate movement to groundwater in the northern great plains, J. Environ. Qual., 26, pp. 1335-1347. DOI:10.2134/jeq1997.00472425002600050020x
  21. Strużyński, A., Książek, L., Bartnik, W., Radecki-Pawlik, A., Plesiński, K., Florek, J., Wyrębek, M. & Strutyński M. (2015). Wetlands in River Valleys as an Effect of Fluvial Processes and Anthropopression, [in:] Ignar, S., Grygoruk, M. (Eds.), Wetlands and Water Framework Directive, GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, Cham, pp. 69–90. DOI:10.1007/978-3-319-13764-3_5
  22. Valett, H.M., Fisher, S.G. & Stanley, E.H. (1990). Physical and Chemical Characteristics of the Hyporheic Zone of a Sonoran Desert Stream, Journal of the North American Benthological Society 9, pp. 201–215. DOI:10.2307/1467584
  23. Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J. & Morrison G. (2005). Passive sampling techniques for monitoring pollutants in water, TrAC Trends in Analytical Chemistry 24, pp. 845–868. DOI:10.1016/j.trac.2005.06.006
  24. WHO (2017). Guidelines for drinking-water quality [online]. 4th ed. World Health Organization ISBN 9789241548151 pp. 541. [Access 10.06.2022]. Available at: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf
  25. Wojak, S., Strużyński, A. & Wyrębek M. (2023). Analysis of changes in hydraulic parameters in a lowland river using numerical modeling, ASP.FC 22, pp. 3–17. DOI:10.15576/ASP.FC/2023.22.1.3
  26. Żelazo, J. (1993). The recent views on the small lowland river training. [In:] Nature and environment conservation in the lowland river valleys in Poland. Ed. L. Tomiałojć. Kraków. IOP PAN p. 145–154 (in Polish)
Go to article

Authors and Affiliations

Cong Ngoc Phan
1 2
ORCID: ORCID
Andrzej Strużyński
1
ORCID: ORCID
Tomasz Kowalik
1
ORCID: ORCID

  1. Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Poland
  2. Institute of Chemistry, Biology and Environment, Vinh University, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

This study used PM10 and PM2.5 measurements from the State Environmental Monitoring stations in Warsaw and its suburban areas. Analysis of variability characteristics at the traffic and urban background stations was carried out for 2016-2021. A six-year analysis (2016-2021) of air quality in Warsaw, Poland, focusing highlights the persistent impact of transportation on particulate matter concentrations. Comparing a city centre traffic station with urban background locations reveals consistently higher PM10 concentrations at the traffic station throughout the year, with an annual traffic-related increase of 12.6 μg/m³ (32%). PM2.5 concentrations at the traffic station are also consistently about 1.5 μg/m³ (7%) higher. For monthly averages, the highest PM10 concentrations at the traffic station were noted in March, which may be related to the resuspention of sand and salt left over from winter snow removalp rocesses. In the case of PM2.5, the typical annual cycle with maximum concentrations in winter and minimum concentrations in summer was not observed. Diurnal variability patterns show elevated PM10 concentrations at the traffic station from 8:00 a.m. to 10:00 p.m., attributed to the resuspension process. PM2.5 patterns exhibit a smaller amplitude at the traffic station, with nighttime accumulation due to inflow. This study emphasizes the lasting impact of transportation on air quality, providing insights into pollution control strategies in urban areas.
Go to article

Bibliography

  1. Cembrzyńska, J., Krakowiak, E. & Brewczyński, P. Z. (2012). Air pollution with suspended dust PM10 and PM2.5 in conditions of strong anthropopressure on the example of the city of Sosnowiec. Medycyna Środowiskowa. 15, 4, pp. 31-38.(in Polish)
  2. Domański, B. (2006). Polish industry compared to the industry of Central and Eastern Europe. Studies of the Industrial Geography Commission of the Polish Geographical Society, 8, pp. 27–36. DOI:10.24917/20801653.8.2. (in Polish)
  3. Godłowska, J. (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a modeling approach, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy Warszawa 2019. (in Polish)
  4. Główny Inspektorat Ochrony Środowiska. (2022). Annual assessment of air quality in the Masovian Voivodeship. Provincial report for the year 2021. (in Polish)
  5. Gustafsson, M., Blomqvist, G., Gudmundsson, A., Dahl, A., Jonsson, P. & Swietlicki, E. (2009). Factors influencing PM10 emissions from road pavement wear, Atmospheric Environment, 43, 31, pp. 4699-4702. DOI:10.1016/j.atmosenv.2008.04.028.
  6. Harrison, R.M., Vu, T.V., Jafar, H. & Shi, Z. (2021). More mileage in reducing urban air pollution from road traffic. Environ Int. 149, 106329. DOI:10.1016/j.envint.2020.106329.
  7. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration, Archives of Environmental Protection 43, 1 pp. 48–64. DOI:10.1515/aep-2017-0005.
  8. Jagiełło, P., Strużewska, J., Jeleniewicz, G. & Kamiński, J.W. (2023). Evaluation of the Effectiveness of the National Clean Air Programme in Terms of Health Impacts from Exposure to PM2.5 and NO2 Concentrations in Poland, International Journal of Environmental Research and Public Health, 20, 1, 530, pp. 1-16. DOI:10.3390/ijerph20010530
  9. Juda-Rezler, K., Zajusz-Zubek, E., Reizer, M., Maciejewska, K. & Klejnowski, K. (2020). Bioavailability of trace elements in atmospheric particulate matter PM2.5 during winter episodes observed in Warsaw, [In:] Current trends in air and climate protection - emission control, monitoring, forecasting and mitigation. Sówka Izabela, Gaj Kazimierz, Miller Urszula (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, p.83.
  10. Kaminski, J.W., Neary, L. Struzewska, J. & McConnell J.C. (2011). Multiscale, Atmospheric Chemistry Modelling with GEMAQ. [In:] Baklanov, A., Alexander, M. and Sokhi, R. (eds) Integrated Systems of MesoMeteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-13980-2_4.
  11. Kupiainen, K., Ritola, R., Stojiljkovic, A., Pirjola, L., Malinen, A. & Niemi, J. (2016). Contribution of mineral dust sources to street side ambient and suspension PM10 samples, Atmospheric Environment, 147, pp. 178-189. DOI:10.1016/j.atmosenv.2016.09.059.
  12. Majewski, G. (2005). Air pollution with particulate matter PM10 in Ursynów and its relation to meteoroloical conditions. Warsaw. Scientific Review. Inżynieria i Kształtowanie Środowiska. pp. 210-223.
  13. Majewski, G., Rogula-Kozłowska W., Rozbicka, K., Rogulska-Kopiec, P., Mathews, B. & Brandyk, A. (2018). Concentration, Chemical Composition and Origin of PM1: Re-sults from the First Long-term Measurement Campaign in Warsaw (Poland), Aerosol and Air Quality Research, 18, 3, pp. 636-654. DOI:10.4209/aaqr.2017.06.0221.
  14. Markowicz K.M., Zawadzka O., Posyniak M. & Uscka-Kowalkowska J. (2019). Long-term variability of aerosol optical depth in the Tatra Mountains region of the Central Europe, J. Geophys. Res., 124 (6), pp. 3464-3475. DOI:10.1029/2018JD028846.
  15. Osowski, J. (2023). Ponad 2,1 mln aut zarejestrowanych w Warszawie. Samochodoza większa niż w Berlinie czy Nowym Jorku, (https://warszawa.wyborcza.pl/warszawa/7,54420,29430864,ponad-2-1-mln-aut-zarejestrowanych-w-warszawie-i-jeszcze-jedno.html (25.11.2023)).
  16. Pirjola, L., Kupiainen, K.J., Perhoniemi, P., Tervahattu, H. & Vesala, H. (2009). Non-exhaust emission measurement system of the mobile laboratory SNIFFER, Atmospheric Environment, 43, 31, pp. 4703-4713. DOI:10.1016/j.atmosenv.2008.08.024.
  17. Polednik, B. (2021). Air quality changes in a Central European city during COVID-19 lockdown, Sustainable Cities and Society, 73, 103096. DOI:10.1016/j.scs.2021.103096.
  18. Smith, T.W., Axon, C.J & Darton, R.C. (2013). The impact on human health of car-related air pollution in the UK, 1995-2005, Atmospheric Environment, 77, pp. 260-266. DOI:10.1016/j.atmosenv.2013.05.016.
  19. Wojtal, R. (2018). Air pollution in cities in terms of car traffic, Urban and Regional Transport 01/2018, pp. 12-17.
  20. Zhang, K. & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic, Science of The Total Environment, 450-451, pp. 307-316. DOI:10.1016/j.scitotenv.2013.01.074.
  21. Zicheng, W., Huayou, C., Jiaming, Z. & Zhenni, D. (2022). Daily PM2.5 and PM10 forecasting using linear and nonlinear modelling framework based on robust local mean decomposition and moving window ensemble strategy, Applied Soft Computing, 114, 108110. DOI:10.1016/j.asoc.2021.108110.
Go to article

Authors and Affiliations

Aleksandra Starzomska
1
ORCID: ORCID
Joanna Strużewska
1

  1. Institute of Environmental Protection—National Research Institute, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to explore the relationship between the Air Quality Index (AQI), COVID-19 incidence rates, and population density within Malaysia’s ten most populous cities from January 2018 to December 2021. Data were sourced from the Department of Statistics Malaysia, the World Air Quality Index Project, and Our World in Statistics. The methodology integrated population-based city classification and AQI assessment, cluster analysis through SPSS, and Generalized Additive Mixed Model (GAMM) analysis using R Studio despite encountering a data gap in AQI for five months in 2019. Cities were organized into three clusters based on their AQI: Cluster One included Ipoh, Penang, Kuala Lumpur, and Melaka, Cluster Two comprised Kuantan, Seremban, Johor Bahru, and Kota Bharu, Cluster Three featured Kota Kinabalu and Kuching. GAMM analysis revealed prediction accuracies for AQI variations of 58%, 60%, and 41% for the respective clusters, indicating a notable impact of population density on air quality. AQI variations remained unaffected by COVID-19, with a forecasted improvement in air quality across all clusters. The paper presents novel insights into the negligible impact of COVID-19 on AQI variations and underscores the predictive power of population dynamics on urban air quality, offering valuable perspectives for environmental and urban planning.
Go to article

Bibliography

  1. Augustin, N. H., Musio, M., von Wilpert, K., Kublin, E., Wood, S. N. & Schumacher, M. (2009). Modeling Spatiotemporal Forest Health Monitoring Data. Journal of the American Statistical Association, 104(487), pp. 899-911. DOI:10.1198/jasa.2009.ap07058
  2. Barouki, R., Kogevinas, M., Audouze, K., Belesova, K., Bergman, A., Birnbaum, L. & Vineis, P. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272. DOI:10.1016/j.envint.2020.106272
  3. Chaudhuri, S. & Chowdhury, A. R. (2018). Air quality index assessment prelude to mitigate environmental hazards. Natural Hazards, 91(1), pp. 1-17.DOI:10.1007/s11069-017-3080-3
  4. Chen, C. (2000). Generalized additive mixed models. Communications in Statistics - Theory and Methods, 29(5-6), pp. 1257-1271.DOI:10.1080/03610920008832543
  5. Chenarides, L., Grebitus, C., Lusk, J. L. & Printezis, I. (2021). Food consumption behavior during the COVID-19 pandemic. Agribusiness, 37(1), pp. 44-81. DOI:,DOI:10.1002/agr.21679
  6. Constantinescu, C. (2019, April 25). Using generalised additive mixed models (gamms) to predict visitors to edinburgh and craigmillar castles. Technical blog from our data science team. https://thedatalab.com/tech-blog/using-generalised-additive-mixed-models-gamms-to-predict-visitors-to-edinburgh-and-craigmillar-castles/
  7. Department of Environment. (2013). General Information of Air Pollutant Index. Retrieved May 6 from http://www.doe.gov.my/webportal/en/info-umum/bahasa-inggeris-general-information-of-air-pollutant-index/
  8. Department of Statistics Malaysia Official Portal. (2020). Population by state, administrative district and sex, 2016-2018. Retrieved April 25 from https://www.dosm.gov.my/v1/index.php?r=column3/accordion&menu_id=aHhRYUpWS3B4VXlYaVBOeUF0WFpWUT09
  9. Environment and Climate Change Canada. (2021, April 28, 2021). About the Air Quality Health Index. Retrieved May 6 from https://www.canada.ca/en/environment-climate-change/services/air-quality-health-index/about.html
  10. Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C. & Kiendler-Scharr, A. (2021). The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene, 9(1). DOI:10.1525/elementa.2021.00176
  11. Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. Taylor & Francis. https://books.google.co.th/books?id=qa29r1Ze1coC
  12. Hormozi, A. M. & Giles, S. (2004). Data Mining: A Competitive Weapon for Banking and Retail Industries. Information Systems Management, 21(2), pp. 62-71. DOI:10.1201/1078/44118.21.2.20040301/80423.9
  13. Jenkins, N. (2015, October 4, 2015). The current haze over Southeast Asia could be among the worst ever. Time. https://time.com/4060786/haze-singapore-indonesia-malaysia-pollution/
  14. Kaewrat, J. & Janta, R. (2021). Effect of COVID-19 Prevention Measures on Air Quality in Thailand. Aerosol and Air Quality Research, 21(3), 200344. DOI:10.4209/aaqr.2020.06.0344
  15. Kotsiou, O. S., Kotsios, V. S., Lampropoulos, I., Zidros, T., Zarogiannis, S. G. & Gourgoulianis, K. I. (2021). PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health, 18(10), 5088. DOI:10.3390/ijerph18105088
  16. Lee, M. & Finerman, R. (2021). COVID-19, commuting flows, and air quality. Journal of Asian Economics, 77, 101374. DOI:10.1016/j.asieco.2021.101374
  17. Li, J., Hallsworth, A. G. & Coca‐Stefaniak, J. A. (2020). Changing Grocery Shopping Behaviours Among Chinese Consumers At The Outset Of The COVID‐19 Outbreak. Journal of Economic and Human Geography, 111(3), pp. 574-583. DOI:10.1111/tesg.12420
  18. Li, L., Lin, G.-Z., Liu, H.-Z., Guo, Y., Ou, C.-Q. & Chen, P.-Y. (2015). Can the Air Pollution Index be used to communicate the health risks of air pollution? Environmental Pollution, 205, pp. 153-160. DOI:,DOI:10.1016/j.envpol.2015.05.038
  19. Liao, Q., Yuan, J., Dong,M., Yang,L., Fielding,R. & Lam, W.W.T. (2020). Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. J Med Internet Res, 22(5), e18796. DOI:10.2196/18796
  20. Lim, Y. K., Kweon, O. J., Kim, H. R., Kim, T.-H. & Lee, M.-K. (2021). The impact of environmental variables on the spread of COVID-19 in the Republic of Korea. Scientific Reports, 11(1), 5977. DOI:10.1038/s41598-021-85493-y
  21. Liu, Q., Xu, S. & Lu, X. (2021). Association between air pollution and COVID-19 infection: evidence from data at national and municipal levels. Environ Sci Pollut Res Int, 28(28), pp. 37231-37243. DOI:10.1007/s11356-021-13319-5
  22. Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C. & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), pp. 947-953. DOI:10.1038/s41562-021-01122-8
  23. Meo, S. A., Abukhalaf, A. A., Alessa, O. M., Alarifi, A. S., Sami, W. & Klonoff, D. C. (2021). Effect of Environmental Pollutants PM2.5, CO, NO2, and O3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. International Journal of Environmental Research and Public Health, 18(15), 7810. DOI:10.3390/ijerph18157810
  24. Pinheiro, J. C. & Bates, D. (2009). Mixed-Effects Models in S and S-PLUS. Springer. https://books.google.co.th/books?id=y54QDUTmvDcC
  25. Plaia, A. & Ruggieri, M. (2011). Air quality indices: a review. Reviews in Environmental Science and Bio/Technology, 10(2), pp. 165-179. DOI:10.1007/s11157-010-9227-2
  26. Tang, W., Hu, T., Yang, L. & Xu, J. (2020). The role of alexithymia in the mental health problems of home-quarantined university students during the COVID-19 pandemic in China. Pers Individ Dif, 165, 110131. DOI:10.1016/j.paid.2020.110131
  27. The World Air Quality Index Project. (2022). Air Quality Historical Data Platform. https://aqicn.org/data-platform/register
  28. Valdés Salgado, M., Smith, P., Opazo, M. A. & Huneeus, N. (2021). Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020. International Journal of Environmental Research and Public Health, 18(14), 7409. DOI:10.3390/ijerph18147409
  29. Wang, J., Wang, J. X. & Yang, G. S. (2020). The Psychological Impact of COVID-19 on Chinese Individuals. Yonsei Med J, 61(5), pp. 438-440. DOI:10.3349/ymj.2020.61.5.438
  30. Wetchayont, P. (2021). Investigation on the Impacts of COVID-19 Lockdown and Influencing Factors on Air Quality in Greater Bangkok, Thailand. Advances in Meteorology, 6697707. DOI:10.1155/2021/6697707
  31. Wong, W. M., Wang, X. & Wang, Y. (2023). The intersection of COVID-19 and air pollution: A systematic literature network analysis and roadmap for future research. Environ Res, 237(Pt 2), 116839. DOI:10.1016/j.envres.2023.116839
  32. Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62(4), pp. 1025-1036. DOI:10.1111/j.1541-0420.2006.00574.x
  33. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), pp. 3-36. DOI:,DOI:10.1111/j.1467-9868.2010.00749.x
  34. Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed.). CRC Press. https://books.google.co.th/books?id=HL-PDwAAQBAJ
  35. Yang, A., Qiu, Q., Kong, X., Sun, Y., Chen, T., Zuo, Y. & Peng, A. (2020). Clinical and Epidemiological Characteristics of COVID-19 Patients in Chongqing China. Front Public Health, 8, 244. DOI:10.3389/fpubh.2020.00244
  36. Zhang, Y. & Ma, Z. F. (2020). Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int J Environ Res Public Health, 17(7). DOI:10.3390/ijerph17072381
  37. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer. https://books.google.co.th/books?id=vQUNprFZKHsC
Go to article

Authors and Affiliations

Wong Ming Wong
1
ORCID: ORCID
Shian-Yang Tzeng
2
ORCID: ORCID
Hao-Fan Mo
3
ORCID: ORCID
Wunhong Su
4
ORCID: ORCID

  1. International College, Krirk University, Thailand
  2. School of Economics and Management, Quanzhou University of Information Engineering, China
  3. JinWen University of Science and Technology, Taiwan
  4. 4School of Accounting, Hangzhou Dianzi University, China
Download PDF Download RIS Download Bibtex

Abstract

The measurements of the concentrations of gaseous and dust pollutants in the anthropogenic environment are an important element of environmental monitoring and for determining directions of preventive activities in the field of health protection. The article presents the results involving the concentrations of suspended dust and gaseous pollutants in the outdoor air, which were recorded at three measuring stations of air quality in the Silesian and Opole voivodeships (Wodzisław Śląski, Zabrze, Kędzierzyn-Koźle). The results were supplemented with the values recorded by the mobile laboratory located at the Center for Continuing Education - Branch of the Silesian University of Technology in Rybnik. The research results were used for a synthetic assessment of the threat level to the anthropogenic environment. In the computational layer, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed, which is included in the group of methods for solving multi-criteria decision-making problems (Multi Attribute Decision Making).
Go to article

Bibliography

  1. Air Quality Index – AQI, https://powietrze.uni.wroc.pl/base/t/indeks-jakosci-powietrza
  2. Bąk, A. (2016). Linear ordering of objects using the Hellwig and TOPSIS methods – comparative analysis. PRACE NAUKOWE Uniwersytetu Ekonomicznego we Wrocławiu. Nr 426. Taksonomia 26 Klasyfikacja i analiza danych – teoria i zastosowania. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, pp. 22-31. (in Polish)
  3. Behzadian, M., Otaghsara, S.K., Yazdani, M. & Ignatius, J. (2012). A state-of the art survey of TOPSIS applications, Expert Systems with Applications, 39, 17, pp. 13051- 13069. DOI:10.1016/j.eswa.2012.05.056.
  4. Boran, F.E., Genc, S., Kurt, M. & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, 36, 8, pp. 11363-11368. DOI:10.1016/j.eswa.2009.03.039.
  5. Chen, C.T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, pp. 1-9. DOI:10.1016/S0165-0114(97)00377-1.
  6. Dymova, L., Sevastjanova, P. & Tikhonenko, A. (2013). A direct interval extension of TOPSIS method, Expert Systems with Applications, 40, 12, pp. 4841-4847. DOI:10.1016/j.eswa.2013.02.022.
  7. EEA. Air Quality in Europe 2022, https://www.eea.europa.eu//publications/air-quality-in-europe-2022 (14. 11.2023).
  8. Geoportal2.pl, https://polska.geoportal2.pl/map/www/mapa.php?mapa=polska
  9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality, Archives of Environmental Protection, 47, 2, pp. 103–114. DOI:10.24425/aep.2021.137282.
  10. Hwang, C.-L. & Yoon, K. (1981). Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, 186, Springer 1981.
  11. ISGlobal—Ranking of Cities. 2021. https://isglobalranking.org/ranking/#air (14.11.2023).
  12. Juginović, A., Vuković, M., Aranza, I. & Biloš, V. (2021). Health Impacts of Air Pollution Exposure from 1990 to 2019 in 43 European Countries, Scientifc Reports, 11, 22516. DOI:10.1038/s41598-021-01802-5.
  13. Kaczmarczyk, M. (2016) Low emissions. Energy efficiency in municipalities and local governments, Geosystem.(in Polish)
  14. Lopuszanska-Dawid, M., Kołodziej, H., Lipowicz, A., Szklarska, A., Kopiczko, A. & Bielicki, T. (2020). Social class-specific secular trends in height among 19-year old Polish men: 6th national surveys from 1965 till 2010, Economics and Human Biology, 37, 100832. DOI:10.1016/j.ehb.2019.100832
  15. Machaczka, O., Jiřík, V., Janulková, T., Michalík, J., Siemiatkowski, G., Osrodka, L., Krajny, E. & Topinka, J. (2023). Comparisons of lifetime exposures between differently polluted areas and years of life lost due to all-cause mortality attributable to air pollution, Environmental Sciences Europe, 35, 73. DOI:10.1186/s12302-023-00778-5.
  16. Meo, S.A., Ahmed Alqahtani, S., Saad Binmeather, F., Abdulrhman, Al., Rasheed, R., Mohammed, A.G. & Mohammed, A.R. (2022). Effect of environmental pollutants PM2.5, CO, O3 and NO2, on the incidence and mortality of SARS-COV-2 in largest metropolitan cities, Delhi, Mumbai and Kolkata, India Sultan, Journal of King Saud University – Science, 34, 1, 101687. DOI:10.1016/j.jksus.2021.101687.
  17. Paplinska-Goryca, M., Misiukiewicz-Stepien, P., Proboszcz, M. Nejman-Gryz, P., Gorska, K. Zajusz-Zubek, E. & Krenke, R. (2021). Interactions of nasal epithelium with macrophages and dendritic cells variously alter urban PM-induced inflammation in healthy, asthma and COPD, Scientifc Reports, 11, 13259. DOI:10.1038/s41598-021-92626-w.
  18. Roszkowska, E. & Kacprzak, D. (2016). The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers, Information Sciences, 369, pp. 564-584. DOI:10.1016/j.ins.2016.07.044.
  19. Shih, H.S., Shyur, H.J. & Lee, E.S. (2007). An extension of TOPSIS for group decision making, Mathematical and Computer Modelling, 45, 7-8, pp. 801-813. DOI:10.1016/j.mcm.2006.03.023.
  20. Wang ,T.C. & Chang, T.H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment, Expert Systems with Applications, 33, 4, pp. 870- 880. DOI:10.1016/j.eswa.2006.07.003.
  21. WHO Global Air Quality Guidelines, 2021, https://apps.who.int/iris/handle/10665/345329 (14.11.2023).
  22. WHO. Air Quality Database (Update 2022), https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (14.11.2023).
  23. Yazdi, M.D., Wang, Y., Di, Q., Requia, W.J., Wei, Y., Shi, L., Sabath, M.B., Dominici, F., Coull, B., Evans, J.S., Koutrakis, P. & Schwartz, J.D. (2021). Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach, The Lancet Planetary Health, e689–e697. DOI:10.1016/s2542-5196(21)00204-7.
  24. Yazdi, M.M. (2015). TOPSIS method for multiple-criteria decision making (MCDM) – package topsis, https://cran.r-project.org/web/packages/tops
  25. Zoran, M.A., Savastru, R.S., Savastru, Dan, M. & Tautan, M.N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy, Science of The Total Environment, 738, 139825. DOI:10.1016/j.scitotenv.2020.139825.
Go to article

Authors and Affiliations

Elwira Zajusz-Zubek
1
ORCID: ORCID
Zygmunt Korban
2

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  2. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study represents the first culture-independent profiling of microbial diversity in post-processing wastewater from underground coal gasification (UCG) processes. Three types of post-processing wastewater, named W1, W2 and W3, were obtained from three UCG processes involving two types of coal and two gasification agents, namely oxygen-enriched air and oxygen. Very high concentrations of BTEX (benzene, toluene, ethylbenzene, xylene), polyaromatic hydrocarbons (PAHs), and phenol were detected in the wastewater, classifying it into the fifth toxicity class, indicating very high acute toxicity. The values for the Shannon (H), Ace and Chao1 indices in W2 were the lowest compared to their values in W1 and W3. The dominate phyla were Proteobacteria, contributing 84.64% and 77.92% in W1 and W3, respectively, while Firmicutes dominated in W2 with a contribution of 66.85%. At the class level, Gammaproteobacteria and Alphaproteobacteria were predominant in W1 and W3, while Bacilli and Actinobacteria were predominant in W2. Among Bacilli, the Paenibacillus and Bacillus genera were the most numerous. Our results suggest that the main differentiating factor of the bacterial structure and diversity in the wastewater could be the gasification agent. These findings provide new insights into the shifting patterns of dominant bacteria in post-processing wastewater and illustrate the spread of bacteria in industrial contaminated wastewater.
Go to article

Bibliography

  1. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  2. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  3. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  4. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  5. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  6. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  7. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  8. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  9. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  10. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  11. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  12. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  13. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  14. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  15. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  16. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  17. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  18. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  19. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  20. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  21. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  22. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  23. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  24. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  25. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  26. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  27. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  28. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  29. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  30. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  31. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
  32. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  33. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  34. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  35. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  36. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  37. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  38. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  39. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  40. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  41. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  42. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  43. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  44. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  45. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  46. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  47. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  48. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  49. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  50. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  51. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  52. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  53. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  54. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  55. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  56. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  57. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  58. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  59. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  60. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  61. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  62. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
Go to article

Authors and Affiliations

Łukasz Jałowiecki
1
Jacek Borgulat
1
Aleksandra Strugała-Wilczek
2
Jan Jastrzębski
3
Marek Matejczyk
1
Grażyna Płaza
4

  1. Institute for Ecology of Industrial Areas,Katowice, Poland
  2. Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
  3. Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
  4. Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plastic pollution in the hydrosphere ranks among the most pervasive environmental issues since the inception of the plastic industry and its widespread use in our daily lives. Nowadays, numerous countries worldwide suffer from this pollution not only along coastlines but also in deep-sea ecosystems. Our study carried out in the Gulf of Annaba aims to assess the prevalence and spatial distribution of plastic waste. Sampling was conducted at four coastal sites: El Battah, Seybousse, Rizzi Amor, and Ain Achir, both before and after the Covid-19 pandemic. The results reveal varying rates of macro and microplastic contamination, influenced by geographical differences, urban activities, and hydrodynamic factors. Moreover, the proportions of contamination depend on the types of waste. Furthermore, our study showed a clear divergence, particularly in two periods before and after the pandemic. Due to the lockdown, implemented in 2020, there was a marked decrease in the percentage of sediment plastic pollution, attributed to reduced human activity and partial cessation of industrial operations in these areas.
Go to article

Bibliography

  1. Anderson, J.C., Park, B.J. & Palace, V.P. (2016). Microplastics in aquatic environments: Implications for Canadian ecosystems. Environmental Pollution 218, pp. 269–280. DOI:10.1016/j.envpol.2016.06.074
  2. Ang, L., Hernández-Rodríguez, E., Cyriaque, V. & Yin, X. (2023). COVID-19's environmental impacts: Challenges and implications for the future. Science of The Total Environment, 899, 165581. DOI:10.1016/j.scitotenv.2023.165581
  3. Barrett, J., Chase, Z., Zhang, J., Holl, M.M.B., Willis, K., Williams, A., Hardesty, B.D. & Wilcox, C. (2020). Microplastic Pollution in Deep-Sea Sediments from the Great Australian Bight. Frontiers in Marine Science, 7, 808. DOI:10.3389/fmars.2020.576170
  4. Baztan, J., Carrasco, A., Chouinard, O., Cleaud, M., Gabaldon, J.E., Huck, T., Jaffres, L., Jorgensen, B., Miguelez, A., Paillard, C. & Vanderlinden, J.P. (2014). Protected areas in the Atlantic facing the hazards of micro-plastic pollution: First diagnosis of three islands in the Canary Current. Mar. Pollut. Bull, 80, pp. 302-311. DOI:10.1016/j.marpolbul.2013.12.052
  5. Blair, R.M., Waldron, S., Phoenix, V.R. & Gauchotte-Lindsay, C. (2019). Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environmental Science and Pollution Research, 26, pp. 12491–12504. DOI:10.1007/s11356-019-04678-1
  6. Blumenroder, J., Sechet, P., Kakkonen, J.E. & Hartl, M.G.J. (2017). Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment. Mar. Pollut. Bull. 124,1, pp. 112-120. DOI:10.1016/j.marpolbul.2017.07.009
  7. Bordós, G., Urbányi, B., Micsinai, A., Kriszt, B., Palotai, Z., Szabó, I., Hantosi, Z. & Szoboszlay, S. (2019). Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Chemosphere 216, pp. 110–116. DOI:10.1016/j.chemosphere.2018.10.110
  8. Chowdhury, H., Chowdhury, T. & Sait, S.M. (2021). Estimating marine plastic pollution from COVID-19 face masks in coastal regions. Mar Pollut Bull. 168, 112419. DOI:10.1016/j.marpolbul.2021.112419
  9. Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L. & Duarte, C. M. (2015). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America. 111, pp. 10239-10244. DOI:10.1073/pnas.1314705111
  10. Di, M., Liu, X., Wang, W. & Wang, J. (2019). Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: Microplastics in the Danjiangkou Reservoir, China. Environmental Toxicology and Pharmacology, 65, pp. 82–89. DOI:10.1016/j.etap.2018.12.009
  11. Frère, L., Paul-Pont, I., Rinnet, E., Petton, S., Jaffré, J., Bihannic, I., Soudant, P., Lambert, C. & Huvet, A. (2017). Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France). Env. Pollut. pp. 211-222. DOI:10.1016/j.envpol.2017.03.023
  12. Galgani, F., Hanke, G., Werner, S., Oosterbaan, L., Nilsson, P., Fleet, D., Kinsey, S., Thompson, R. C., VanFraneker, J., Vlachogianni, T., Scoullos, M., Veiga, J.M., Palatinus, A., Matiddi, M., Maes, T., Korpinen, S., Budziak, A., Leslie, H., Gago, H. & Liebezeit, G. (2013). Guidance on monitoring of marine litter in European seas. EUR- Scientific and Technical Research series-ISSN 1831-9424 (online), Luxembourg Publications Office of the European Union, [eds.] Hanke G., Werner S., Galgani F., Veiga J.M. & Ferreira M. (ISBN: 978-92-79-32709-4). DOI:10.2788/99475
  13. Galgani, F., Mendoza, A., Osa, J.L., Basurko, O.C., Rubio, A., Santos, M., Gago, J. & Rodriguez, C.P. (2020). Microplastics in the Bay of Biscay: An overview. Mar. Polut. Bull.153, 110996. DOI:10.1016/j.marpolbul.2020.110996
  14. Global Carbon Project. (2020). Budget carbone [Document WWW]. Glob. Carbone Proj. URL https://www.globalcarbonproject.org/carbonbudget/index
  15. Graca, B., Szewc, K., Zakarzewska, D., Dolega, A. & Szczerbowska-Boruchowska, M. (2017). Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea - a preliminary study. Environ. Sci. Pollut. Res.24(8), pp. 7650 - 7661. DOI:10.1007/s11356-017-8419-5
  16. Horton, A.A., Svendsen, C., Williams, R.J., Spurgeon, D.J. & Lahive, E. (2017a). Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114, pp. 218–226. DOI:10.1016/j.marpolbul.2016.09.004
  17. Hudson, A. (2020). L’effet COVID-19 sur nos océans. Head of Water and Ocean Governance Programme, UNDP. L’effet COVID-19 sur nos océans | Programme De Développement Des Nations Unies (undp.org)
  18. Imhof, H. K., Sigl, R., Brauer, E., Feyl, S., Giesemann, P., Klink, S., Leupolz, K., Loder, M. G., Loschel, L. A., Missun, J., Muszynski, S., Ramsperger, A. F., Schrank, I., Speck, S., Steibl, S., Trotter, B., Winter, I. & Laforsch, C. (2017). Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull,15, 116(1-2), pp. 340-347. DOI:10.1016/j.marpolbul.2017.01.010.
  19. Klein, S., Worch, E. & Knepper, T.P. (2015). Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 49, pp. 6070–6076. DOI:10.1021/acs.est.5b00492
  20. Lippiatt, S., Opfer, S. & Arthur, C. (2013). Marine Debris Monitoring and Assessment. NOAA Technical Memorandum NOS-OR&R-46. https://pub-data.diver.orr.noaa.gov/marine-debris/pacificislands/Lippiatt%20et%20al.%202013
  21. Okuku, E., Kiteresi, L., Owato, G., Otieno, K., Mwalugha, C., Mbuche, M., Gwada, B., Nelson, A., Chepkemboi, P., Achieng, Q., Wanjeri, V., Ndwiga, J., Mulupi, L. & Omire, J. (2021). The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan Coast: A synthesis after 100 days following the first reported case in Kenya. Mar Pollut Bull. 162: 111840. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1065433#
  22. Ormaza-Gonzalez, F. & Castro-Rodas, D. (2020). COVID-19 Impacts on Beaches and Coastal Water Pollution: Management Proposals Post-pandemic. 2020, 2020060186. Preprints 2020060186. DOI:10.20944/PREPRINTS202006.0186.V1.
  23. Pedrotti, M. L., Petit, S., Elineau, A., Bruzaud, S., Crebassa, J. C., Dumontet, B., Marti, E., Gorsky, G. & Cozar, A. (2016). Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land. PLoS One. 1-14. DOI:10.1371%2Fjournal.pone.0161581
  24. Phuong, N.N., Fauvelle, V., Grenz, C., Ourgaud, M., Schmidt, N., Strady, E. & Sempéré, R. (2021). Highlights from a review of microplastics in marine sediments, Science of the Total Environment. DOI:10.1016/j.scitotenv.2021.146225
  25. The Economist, 2021. ttps://ocean.economist.com/?RefID=EM1707WS_Email_edm2
  26. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R. (2015b). Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 5-17. DOI:10.1016/j.marenvres.2015.06.007
  27. Vandermeersch, G., Van Cauwenberghe, L., Janssen, C. R., Marques, A., Granby, K.Fait, G., Kotterman, M. J., Diogene, J., Bekaert, K., Robbens, J. & Devriese, L. (2015). A critical view on microplastic quantification in aquatic organisms. Environ. Res. pp. 46-55. DOI:10.1016/j.envres.2015.07.016
  28. Vermeiren, P., Muñoz, C. & Ikejima, K. (2020). Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut.114298. DOI:10.1016/j.envpol.2020.114298
  29. Waller, C.L., Griffiths, H.J., Waluda, C.M., Thorpe, S.E., Loaiza, I, Moreno, B., Pacherres, C.O. & Hughes, K.A. (2017). Microplastis in the Antarctic marine system: An emerging area of research. Mar. Pollut. Bull. pp. 220-227. DOI:10.1016/j.scitotenv.2017.03.283
  30. Yang, H., Sun, F., Liao, H., Guo, Y., Pan, T., Wu, F. & Giesy, J.P. (2023). Distribution, abundance, and risks posed by microplastics in surface waters of the Yangtze River Basin, China. Environmental Pollution. 333, 122086. DOI:10.1016/j.envpol.2023.122086
  31. Yuan, Q., Qi, B., Hu, D., Wang, J., Zhang, J., Yang, H., Zhang, S., Liu, L., Xu, L. & Li, W. (2020). Spatiotemporal variations and reduction of air pollutants during the COVID- 19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 751. DOI:10.1016%2Fj.scitotenv.2020.141820
  32. Zambrano-Monserrate, M.A., Ruano, M.A. & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Sci. Total Environ. 138813. DOI:10.1016/j.scitotenv.2020.138813.
Go to article

Authors and Affiliations

Lakbar Chanez
1
Djennane Rania
1
Trea Fouzia
1
ORCID: ORCID
Samar Faouzi
2
Ouali Kheireddine
1
ORCID: ORCID

  1. Laboratory of Environmental Biosurveillance, Badji Mokhtar University, BP 12 Sidi Amar, Annaba 23000, Algeria
  2. University Chadli Bendjedid, El Tarf 36000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This article describes the population of Xizang, the composition of municipal solid waste, and the distribution of municipal solid waste treatment facilities. With the development of Xizang's economy and tourism, the amount of municipal solid waste cleared and transported in Xizang has increased from 380,000 tons in 2003 to 692,200 tons in 2021, with an average annual growth rate of 4.56%. The proportions of kitchen waste, paper waste, and ash waste in the municipal solid waste components in Xizang have significantly decreased over the past 10 years. For example, the proportion of ash decreased from 22.83% in 2012 to 13.04% in 2021. Overall, recyclables such as paper, plastic rubber, textiles, glass, metal and wood and bamboo accounted for between 55.69% and 58.22% of the total municipal solid waste in Lhasa City. The disposal of municipal solid waste in Xizang was mainly through landfill. There are more than 130 landfill sites, 1 incineration plant, 5 pyrolysis pilot sites, 2 kitchen waste treatment plants, and more than 160 waste transfer stations for municipal solid waste disposal in Xizang. The designed daily disposal capacity of municipal solid waste is 3,768.4 tons per day.
Go to article

Bibliography

  1. Chen Haibin , Yang Yan , Jiang Wei , Song Mengjie, Wang Ying & Xiang Tiantian (2016). Source separation of municipal solid waste The effects of different separation mothods and citizens inclination case study of Changsha. Journal of the Air & Waste Management Association, 67(2), pp. 182-195. DOI:10.1080/10962247.2016.1222317
  2. Dan, Z., Zhou, W., Zhou, P., Che, Y., Han, Z., Qiong, A., Bu, D., Lv, X., Qiongda, Z., Wang, J., Yang, W. & Chen, G. (2022). Characterization of municipal solid waste incineration and flue gas emission under anoxic environment in Tibet Plateau. Environmental Science and Pollution Research ,29, 6656–6669. DOI:10.1007/s11356-021-15977-x
  3. Dolezalová, M, Benešová, L. & Závodská, A. (2013). The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods. Waste Manag 33(9):1950–1957. DOI:10.1016/j.wasman.2013.04.017
  4. Duan, N., Li, D., Wang, P., Ma, W., Terrence. W., Zhong, L. &Chen, G. (2020). Comparative study of municipal solid waste disposal in three Chinese representative cities. Journal of Cleaner Production, 254,1 20134. DOI:10.1016/j.jclepro.2020.120134
  5. Fabrizio, P., Ivano, V., Francesco, M., Luciano, M. & Barbara, V., (2011). Indicators of waste management efficiency related to different territorial conditions. Waste Management, 31(4): 785–792. DOI:10.1016/j.wasman.2010.11.021
  6. Han, Z., Dan, Z., Shi, G., Shen, L., Xu, W. & Xie, Y. (2015). Characteristics and management of domestic waste in a rural area of the Tibetan Plateau. Journal of the Air and Waste management asociation,65(11), 1365-1375. DOI:10.1080/10962247.2015.1078859
  7. Han, Z., Ye, C., Zhang, Y., Dan, Z., Zou, Z., Liu, D. & Shi, G. (2019). Characteristics and management modes of domestic waste in rural areas of developing countries : a case study of China. Environmental Science and Pollution Research ,26, 8485-8501. DOI:10.1007/s11356-019-04289-w
  8. Hiramatsu, A, Hara, Y., Sekiyama, M., Honda, R. & Chiemchaisri, C., (2009). Municipal solid waste flow and waste generation characteristics in an urban–rural fringe area in Thailand. Waste Management and Research, 27(10), pp.951–960. DOI:10.1177/0734242X09103819
  9. Ko,P.S. & Poon, C.S. (2009). Domestic waste management and recovery in HongKong. Journal of Mater Cycles Waste Management, 11, pp. 104-109. DOI:10.1007/s10163-008-0232-2
  10. Liu, Z.Q., Liu,Z.H. & Li, X.L. (2006). Status and prospect of the application of municipal solid waste incineration in China. Applied Thermal Engineering, 26, pp. 1193-1197. DOI:10.1016/j.applthermaleng.2005.07.036
  11. Paúl ,T.G., Carolina, A.V., Quetzalli, A.V. & Sara, O.B. (2010). Household solid waste characteristics and management in rural communities. Open Waste Management Journal, 3(7) pp.167–173. DOI:10.2174/1875934301003010167
  12. Wang, H. & Wang, C. (2012). Municipal Solid Waste management in Beijing: Characteristics and challenges. Waste Management and Research, 31(1), pp. 67-72. DOI:10.1177/0734242X12468199
  13. Xiao, L., Lin, T., Chen, S., Zhang, G., Ye, Z. & Yu, Z. (2015). Characterizing urban household waste generation and metabolism considering community strtification in a rapid urbanizing area of China. Plos One, 10(12), e0145405. DOI:10.1371/journal.pone.0145405
  14. Zhang, D., Soon, K.T. & Gersberg, R.M. (2010). Municipal solid waste management in China:Status,problems and challenges. Journal of Environmental Management, 91(8), pp. 1623-1633. DOI:10.1016/j.jenvman.2010.03.012
  15. Zhao, W.,Voet, E., Zhang,Y. & Huppes,G. (2009). Life cycle assessment of municipal solid waste management with regard to green house gas emissions: case study of Tianjin, China. Science of the Total Environment,407(5), pp. 1517-1526.DOI:10.1016/j.scitotenv.2008.11.007
  16. Zhou, W., Dan, Z., Meng, D., Zhou, P., Chang, K., Qiongda, Z., Wang, J., Xu, F..&Chen, G. (2022a). Distribution characteristics and potential ecological risk assessment of heavy metals in soils around Shannan landfill site, Tibet. Environmental Geochemistry and Health, 45(2), pp. 393-407. DOI:10.1007/s10653-022-01349-y
  17. Zhou, W., Dan, Z., Zhou, P., Guanyi, C. & Meng, D. (2022b). Study on health risk assessment of potentially toxic elements in the soil around landfill site in Shannan City, Tibet. Environmental Pollutants and Bioavailability, 34(1), pp. 365-373. DOI:10.1080/26395940.2022.2118832
  18. Zhou, W. & Dan, Z. (2023ª). Comparison and Selection of Municipal Solid Waste Treatment Technologies in Tibet Plateau Area. SN Applied Sciences, 5(2), 50. DOI:10.1007/s42452-022-05255-x
  19. Zhou, W., Zeng, D., Dean, M., Jiachen, G., Peng, Z & Guanyi, C. (2023b). Analysis and Assessment of the Soil Environment Around a Plateau Municipal Solid Waste Incineration Plant. Soil and Sediment Contamination: An International Journal,33, pp. 1-18. DOI:10.1080/15320383.2023.2276178
  20. Zhuang, Y., Wu, S., Wang, Y., Wu, W. & Chen, Y. (2008). Source separation of household waste: A case study in China. Waste Management,28(10),2022-2030. https://doi.org/10.1016/j.wasman.2007.08.012
Go to article

Authors and Affiliations

Wenwu Zhou
1
ORCID: ORCID
Zeng Dan
1

  1. School of Ecology and Environment ,Tibet University, Lhasa, China
Download PDF Download RIS Download Bibtex

Abstract

The cyanobacteria bloom is one of typical manifestations of eutrophication, yet the effects of heavy metals entering water on cyanobacteria bloom remain unclear. In the present study, the effects of copper and zinc ions on the growth of Microcystic aeruginosa (M. aeruginosa) and the production of microcystins (MCs) were investigated. The results showed that a Cu2+ concentration of 0.02 mg/L stimulated the growth of M. aeruginosa, while growth inhibition occurred at a Cu2+ concentration of 0.1 mg/L. The maximum value of MC-LR (167.74 μg/L) occurred at a Cu2+ concentration of 0.02 mg/L. In contrast, a Zn2+ concentration of 0.1 mg/L stimulated the growth of M. aeruginosa, whereas growth inhibition was observed at a Zn2+ concentration of 0.5 mg/L. The maximum MC-LR value of 130 μg/L appeared under control conditions. Moreover, the production of MC-LR increased as the growth of M. aeruginosa was inhibited with a Cu2+ concentration of 0.1 mg/L, whereas the production of MC-LR decreased as the growth of M. aeruginosa was stimulated with a Zn2+ concentration of 0.1 mg/L, compared to their respective controls.
Go to article

Bibliography

  1. Admiraal, W., Tubbing, G.M.J. & Breebaart, L. (1995). Effects of phytoplankton on metal partitioning in the Lower River Rhine, Water Research, 29, 3, pp. 941-946. DOI:10.1016/0043-1354(94)00204-K.
  2. Ao, D., Lei, Z., Dzakpasu, M. & Chen, R. (2019). Role of divalent metals Cu2+ and Zn2+ in microcystis aeruginosa proliferation and production of toxic microcystins, Toxicon, 170, pp. 51-59. DOI:10.1016/j.toxicon.2019.09.012.
  3. Bishop, W.M., Willis, B.E. & Horton, C.T. (2015). Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya Wollei Control in Lay Lake, AL, Environmental Management, 55, pp. 983-990. DOI:10.1007/s00267-014-0433-5.
  4. Brookes, J. D. & Carey, C.C. (2011). Resilience to blooms, Science, 334, 6052, pp. 46-47. DOI:10.1126/science.1207349.
  5. Bouron, A., Kiselyov, K. & Oberwinkler, J. (2015). Permeation, regulation and control of expression of TRP channels by trace metal ions, Pflügers Archiv- European Journal of Physiology, 467, pp. 1143-1164. DOI:10.1007/s00424-014-1590-3.
  6. Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E. & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest turkish freshwater lake: Lake Beyşehir, Science of the Total Environment, 621, pp. 802-816. DOI:10.1016/j.scitotenv.2017.11.258.
  7. Cavet, J.S., Borrelly, G.P.M. & Robinson, N.J. (2003). Zn, Cu and Co in Cyanobacteria: selective control of metal availability, FEMS Microbiology Reviews, 27, (2-3), pp. 165-181. DOI:10.1016/S0168-6445(03)00050-0.
  8. Chakraborty, P., Babu, P.V.R., Acharyya, T. & Bandyopadhyay, B. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC, Chemosphere, 80, 5, pp. 548-553. DOI:10.1016/j.chemosphere.2010.04.039.
  9. Chen, Y., Yin, J., Wei, J. & Zhang, X. (2020) FurA-Dependent Microcystin Synthesis under Copper Stress in Microcystis aeruginosa, Microorganisms, 8, 832. DOI:10.3390/microorganisms806083.
  10. Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X. & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments, World Journal of Microbiology and Biotechnology, 32, 51. DOI:10.1007/s11274-015-2003-2.
  11. Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health, Archives of Industrial Hygiene and Toxicology, 64, 2, pp. 119-130, DOI:10.2478/10004-1254-64-2013-2320.
  12. Du, C., Li, G., Xia, R., Li, C., Zhu, Q., Li, X., Li, J., Zhao, C., Tian, Z. & Zhang, L. (2022). New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems, Environmental Pollution, 309, 119781, DOI:10.1016/j.envpol.2022.119781.
  13. Facey, J.A., Apte, S.C. & Mitrovic, S.M. (2019). A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production, Toxins, 11, 11, 643, DOI:10.3390/toxins11110643.
  14. Gangi, D., Plastani, M.S., Laprida, C. Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. & Pinto, P.D.T. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63, pp. 195-209. DOI:10.1007/s10933-020-00110-8.
  15. Han, C., Machala, L., Medrik, I., Prucek, R., Kralchevska, R.P. & Dionysiou, D.D. (2017). Degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination, Environmental Science and Pollution Research, 24, pp. 19435-19443. DOI:10.1007/s11356-017-9566-4.
  16. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms, Nature Reviews Microbiology, 16, pp. 471-483. DOI:10.1038/s41579-018-0040-1
  17. Kormas, K.A.r., Gkelis, S., Vardaka, E. & Moustaka-Gouni, M. (2011). Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow mediterranean lakes, Limnologica, 41, 3, pp. 167-173. DOI:10.1016/j.limno.2010.10.003.
  18. Krishnan, A., Koski, G. & Mou, X. (2020). Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells, Toxicon, 173, pp. 20-26. DOI:10.1016/j.toxicon.2019.11.003.
  19. Martínez-Ruiz, E.B. & Martínez-Jerónimo, F. (2016). How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis Aeruginosa exposed to nickel stress, Ecotoxicology and Environmental Safety, 133, pp. 36-46. DOI:10.1016/j.ecoenv.2016.06.040.
  20. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino D. & McCarthy M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, pp. 86-93. DOI:10.1016/j.hal.2018.11.003.
  21. Oberemm, A., Becker, J., Codd, G.A. & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians, Environmental Toxicology, 14, 1, pp. 77-88. DOI:10.1002/(SICI)1522-7278(199902)14:1%3C77::AID-TOX11%3E3.0.CO;2-F
  22. Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial Ecology, 65, pp. 995-1010. DOI:10.1007/s00248-012-0159-y.
  23. Paerl, H.W, Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. & Gardner, W.S. (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, 45, 5, pp. 1973-1983. DOI:10.1016/j.watres.2010.09.018.
  24. Polyak, Y., Zaytseva, T. & Medvedeva, N. (2013). Response of toxic cyanobacterium microcystis aeruginosa to environmental pollution, Water, Air, & Soil Pollution, 224, 4, 1494. DOI:10.1007/s11270-013-1494-4.
  25. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F. & Peleato, M.L. (2008). Iron availability affects McyD expression and microcystin-LR synthesis in Microcystis Aeruginosa PCC7806: iron starvation triggers microcystin synthesis, Environmental Microbiology, 10,10, pp. 2476-2483. DOI: 10.1111/j.1462-2920.2008.01663.x.
  26. Shen, F., Wang, L., Zhou, Q. & Huang. X., (2018). Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins, Aquatic Toxicology 196, pp. 9-16. DOI:10.1016/j.aquatox.2018.01.007.
  27. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A. & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91 (2), pp. 621-650. DOI:10.1007/s00204-016-1921-6.
  28. Tsai, K. P. (2015). Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 120, pp. 428-435. DOI:10.1016/j.ecoenv.2015.06.024.
  29. Xu, H., McCarthy, M.J., Paerl, H.W., Brookes, J.D., Zhu, G., Hall, N.S., Qin, B., Zhang, Y., Zhu, M., Hampel, J. J., Newell, S.E. & Gardner, W.S. (2021). Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnology and Oceanography, 66, 4, pp. 1492-1509. DOI:10.1002/lno.11700.
  30. Zhou, H., Chen, X., Liu, X., Xuan, Y. & Hu, T. (2019). Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom, Water Environment Research, 91, pp. 21-31. DOI:10.2175/106143017X15131012188303.
  31. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H. & Deng, J. (2013). Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis Aeruginosa, Science of the Total Environment, 463-464, pp. 111-119. DOI:10.1016/j.scitotenv.2013.05.064.
  32. Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R. & Liu, Y. (2018). characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina Platensis, Bioresource Technology, 269, pp. 285-291. DOI:10.1016/j.biortech.2018.08.131.
Go to article

Authors and Affiliations

Benjun Zhou
1
Weihao Xing
1

  1. School of Resources and Environmental Engineering, Hefei University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of a research on the photoacoustic spectra of thin surface layers of Cd1−xBexTe crystals formed by grinding and polishing their surfaces. As a result of matching the theoretical and experimental photoacoustic spectra, thermal and optical parameters of these layers were determined. Thermal parameters of the surface layers, such as thermal conductivity and thermal diffusivity, turned out to be much worse than the analogous parameters of the substrate. The increase in the optical absorption of surface layers for photon energies below Eg was also determined.

Eg was also determined.
Go to article

Authors and Affiliations

Leszek Bychto
1
ORCID: ORCID
Mirosław Maliński 
1
ORCID: ORCID
Łukasz Chrobak
1
ORCID: ORCID
Jacek Zakrzewski
2
ORCID: ORCID
Mohammed Boumhamdi
2
ORCID: ORCID

  1. Faculty of Electronics and Computer Studies, Technical University of Koszalin, ul. Śniadeckich 2, Koszalin, Poland
  2. Institute of Physics, Nicolaus Copernicus University, ul. Grudziądzka 5/7, 87-100 Torun, Poland
Download PDF Download RIS Download Bibtex

Abstract

In current CubeSat observation satellites, the main design constraint is the available space. Standards dictating the unit dimensions of the payload severely restrict the maximum aperture and focal length of the optical instrument. In this paper, the authors present the results of work to produce a novel DeploScope optical system for a CubeSat-type observation satellite with a segmented aperture of the primary mirror deployed in space. The telescope is designed for Earth observation and is expected to find its application in the military, precision agriculture or environmental disaster prevention. The work includes a detailed analysis of the segment aperture effect on image repeatability for different numbers of main mirror segments. Based on it, the optimal configuration of the optical model of the telescope with an aperture of 188.5 mm and a focal length of 1100 mm was selected. Based on this analysis, a so-called laboratory version of the telescope was built, providing the possibility of free correction of each segment of the primary mirror while maintaining a solid stable base for other components of the module. Imaging tests were carried out on the laboratory version of the instrument and the system was optimized for a version suitable for implementation in the payload structure of the microsatellite.
Go to article

Authors and Affiliations

Paweł Knapkiewicz
Tymon Janisz
ORCID: ORCID
Grzegorz Charytoniuk
Michał Partyka
Tomasz Pozniak
Damian Stefanow
ORCID: ORCID
Jakub Chołodowski
ORCID: ORCID

This page uses 'cookies'. Learn more