Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 45
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of the organic compound representing the cellulose derivative - sodium salt of carboxymethyl cellulose (CMC/Na) on the structure of the main component of bentonite (B) - montmorillonite (MMT). Structural analysis revealed that the CMC/Na of different viscosity interacts with the mineral only via surface adsorption, causing at the same time partial or full delamination of its layered structure. This was confirmed by the XRD diffraction tests. Such polymer destructive influence on the structure of the modified main component of the bentonite limits the use of its composites as an independent binder in moulding sand technology, but does not exclude it from acting as an additive being a lustrous carbon carrier. According to the IR spectra of the B/CMC/Na materials, it can be stated that the interaction between the organic and inorganic parts is based on the formation of hydrogen bonds. That kind of the interpretation applies especially to the MMT modified in the bentonite with a lower viscosity polymer. The characteristics of the main IR absorption bands for composites with a higher viscosity polymer indicates the formation of less stable structures suggesting the random nature of the hydrogen bonds formation.

Go to article

Authors and Affiliations

S. Cukrowicz
B. Grabowska
K. Kaczmarska
A. Bobrowski
M. Sitarz
B. Tyliszczak
Download PDF Download RIS Download Bibtex

Abstract

Recently, aluminum matrix syntactic foams (AMSFs) have become notably attractive for many different industrial areas like automotive, aerospace, construction and defense. Owing to their low density, good compression response and perfect energy absorption capacity, these advanced composite materials are also considered as strong alternatives to traditional particle reinforced composites and metal foams. This paper presents a promising probability of AMSF fabrication by means of industrial cold chamber die casting method. In this investigation, contrary to other literature studies restricted in laboratory scale, fully equipped custom-build cold chamber die casting machine was used first time and all fabrication steps were designed just as carried out in the real industrial high pressure casting applications. Main casting parameters (casting temperature, injection pressure, piston speed, filler pre-temperature and piston waiting time) were optimized in order to obtain flawless AMSF samples. The density alterations of the syntactic foams were analyzed depending upon increasing process values of injection pressure, piston speed and piston waiting time. In addition, macroscopic and microscopic investigations were performed to comprehend physical properties of fabricated foams. All these efforts showed almost perfect infiltration between filler particles at the optimized injection parameters.

Go to article

Authors and Affiliations

C. Bolat
A. Goksenli
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm2, intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm2, randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 μm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm2, 50 s, and up to 1.16 GPa for 40 J/cm2, 200 s.

Go to article

Authors and Affiliations

D. Zaguliaev
S. Konovalov
Y. Ivanov
A. Abaturova
A. Leonov
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.

Go to article

Authors and Affiliations

A. Kotarska
D. Janicki
J. Górka
ORCID: ORCID
T. Poloczek
Download PDF Download RIS Download Bibtex

Abstract

The microstructure of Al-Si alloy has coarse silicon and this structure is known dangerous for mechanical properties due to its crack effect. Sr addition is preferred to modify the coarse silica during solidification. Additionally, bifilms (oxide structure) are known as a more dangerous defect which is frequently seen in light alloys. It is aimed at that negative effect of bifilms on the properties of the alloys tried to be removed by the degassing process and to regulate the microstructure of the alloy. In this study, the effect of degassing and Sr modification on the mechanical properties of AlSi12Fe alloy was investigated, extensively. Four different parameters (as-received, as-received + degassing, Sr addition, Sr addition + degassing) were studied under the same conditions environmentally. The microstructural analyses and mechanical tests were done on cast parts. All data obtained from the experimental study were analyzed statistically by using statistical analysis software. It was concluded from the results that Sr addition is very dangerous for AlSi12Fe alloy. It can be suggested that to reach high mechanical properties and low casting defects, the degassing process must be applied to all castings whereas Sr addition should not be preferred.

Go to article

Authors and Affiliations

M. Uludağ
M. Gurtaran
D. Dispinar
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Stable dispersion of antimony-doped tin oxide nano-powder was prepared by wet attrition process by comminuting aggregated ATO nano-powder using the titanate coupling agent as a dispersant to form the chemisorbed layer on the particle surface. The feed solution of the ATO dispersion and PVP was prepared for electro-spun fibers on the glass substrate. The surface resistance of the fibrous ATO film after electrospinning for 30 minutes was in the order of 105 Ω/□, which is sufficient for anti-static coating. The optical transmittance of ATO fibers was confirmed by measuring the visible light transmittance.

Go to article

Authors and Affiliations

Young-Sang Cho
ORCID: ORCID
Minho Han
Seung Hee Woo
Download PDF Download RIS Download Bibtex

Abstract

In this study, we have developed Sn-Ag alloy by a simple high energy ball milling technique. We have ball-milled the eutectic mixture of Sn and Ag powders for a period of 45 h. The milled powder for 45 h was characterized for particle size and morphology. Microstructural investigations were carried out by scanning electron microscopy and X-ray diffraction studies. The melting behavior of 45 h milled powder was studied by differential scanning calorimetry. The resultant crystallite size of the Sn(Ag) solid solution was found to be 85 nm. The melting point of the powder was 213.6oC after 45 h of milling showing depression of ≈6oC in melting point as compared to the existing Sn-3.5Ag alloys. It was also reported that the wettability of the Sn-3.5Ag powder was significantly improved with an increase in milling time up to 45 h due to the nanocrystalline structure of the milled powder.

Go to article

Authors and Affiliations

Ashutosh Sharma
ORCID: ORCID
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we have studied the evolution of morphology and brazing behavior of Ag-28Cu alloy filler processed by high energy ball milling. The milling of the powder mixture was carried out for 40 h. The structural and morphological analyses were performed by the X-ray diffraction and scanning electron microscopy. The melting temperature of the braze filler was determined by differential thermal analysis. The filler wetting properties were assessed from the spread area ratio measurements on various Ti substrates. The results indicate that the ball milling can effectively depress the filler melting point and enhance the brazeability. The milled powder mixture showed Ag(Cu) solid solution with a crystallite size of 174-68 nm after 40 h. It was shown that the high energy ball milling can be a potential method to develop low temperature brazing fillers for advanced microjoining applications.

Go to article

Authors and Affiliations

Ashutosh Sharma
ORCID: ORCID
Myoung Jin Chae
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The flow behavior of 7175 aluminum alloy was modeled with Arrhenius-type constitutive equations using flow stress curves during a hot compression test. Compression tests were conducted at three different temperatures (250°C, 350°C, and 450°C) and four different strain rates (0.005, 0.05, 0.5, and 5 s−1). A good consistency between measured and set values in the experimental parameters was shown at strain rates of 0.005, 0.05, and 0.5 s−1, while the measured data at 5 s−1 showed the temperature rise of the specimen, which was attributable to deformation heat generated by the high strain rate, and a fluctuation in the measured strain rates. To minimize errors in the fundamental data and to overcome the limitations of compression tests at high strain rates, constitutive equations were derived using flow curves at 0.005, 0.05, and 0.5 s−1 only. The results indicated that the flow stresses predicted according to the derived constitutive equations were in good agreement with the experimental results not only at strain rates of 0.005, 0.05, and 0.5 s−1 but also at 5 s−1. The prediction of the flow behavior at 5 s−1 was correctly carried out by inputting the constant strain rate and temperature into the constitutive equation.

Go to article

Authors and Affiliations

Young-Chul Shin
ORCID: ORCID
Dae-Kwan Joung
Seong-Ho Ha
ORCID: ORCID
Ho-Joon Choi
Soong-Keun Hyun
Download PDF Download RIS Download Bibtex

Abstract

In this study, a molybdenum alloy with dispersed high-entropy particles was fabricated using the powder metallurgy method. The high-entropy powder, composed of Nb, Ta, V, W, and Zr elements with a same atomic fraction, was prepared via high-energy ball milling. Using this powder, an ideal core-shell powder, composed of high-entropy powder as core and Mo powder as shell, was synthesized via the milling and reduction processes. These processes enabled the realization of an ideal microstructure with the high-entropy phase uniformly dispersed in the Mo matrix. The sintered body was successfully fabricated via uniaxial compaction followed by pressureless sintering. The sintered body was analyzed by X-ray diffraction and scanning electron microscope, and the high-entropy phase is uniformly dispersed in the Mo matrix.

Go to article

Authors and Affiliations

Won June Choi
CheonWoong Park
Jongmin Byun
ORCID: ORCID
Young Do Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of adding niobium and vanadium to Fe-based oxide dispersion strengthened alloys are confirmed. The composition of alloys are Fe-20Cr-1Al-0.5Ti-0.5Y2O3 and Fe-20Cr-1Al-0.5Ti-0.3V-0.2Nb-0.5Y2O3. The alloy powders are manufactured by using a planetary mill, and these powders are molded by using a magnetic pulsed compaction. Thereafter, the powders are sintered in a tube furnace to obtain sintered specimens.

The added elements exist in the form of a solid solution in the Fe matrix and suppress the grain growth. These results are confirmed via X-ray diffraction and scanning electron microscopy analyses of the phase and microstructure of alloys. In addition, it was confirmed that the addition of elements, improved the hardness property of Fe-based oxide dispersion strengthened alloys.

Go to article

Authors and Affiliations

Chun Woong Park
Jongmin Byun
ORCID: ORCID
Won June Choi
Young Do Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The effect of TiC content on the microstructure and mechanical properties of a nanocrystalline Fe-Mn alloy was investigated by XRD analysis, TEM observation, and mechanical tests. A sintered Fe-Mn alloy sample with nano-sized crystallites was obtained using spark plasma sintering. Crystallite size, which is used as a hardening mechanism, was measured by X-ray diffraction peak analysis. It was observed that the addition of TiC influenced the average size of crystallites, resulting in a change in austenite stability. Thus, the volume fraction of austenite at room temperature after the sintering process was also modified by the TiC addition. The martensite transformation during cooling was suppressed by adding TiC, which lowered the martensite start temperature. The plastic behavior and the strain-induced martensite kinetics formed during plastic deformation are discussed with compressive stress-strain curves and numerical analysis for the transformation kinetics.

Go to article

Authors and Affiliations

Junhyub Jeon
ORCID: ORCID
Seunggyu Choi
Namhyuk Seo
ORCID: ORCID
Young Hoon Moon
In-Jin Shon
Seok-Jae Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Section steels produced by welding are essential parts for shipbuilding and offshore plant production. T-type and H-type section steels are produced by handwork for secondary processing, which is a generally difficult and tedious activity. Therefore, automatic welding, with sound welding properties and a high-speed process, is necessary to meet the production demands. Welding conditions can be optimized by controlling various parameters to obtain suitable and highly reliable microstructural properties. In this study, the heat affected zone and weld defects of fillet-welded Angle and T-bar parts were investigated in terms of their microstructural, macrostructural, and mechanical properties to ensure the soundness of AH36 section steel parts joined by continuous welds.

Go to article

Authors and Affiliations

Jihoon Jang
Changsuk Yoon
Sangik Lee
Dong-Geun Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This study was undertaken to investigate the effect of severe plastic deformation (SPD) by extrusion combined with reversible torsion (KoBo) method on microstructure and mechanical properties of Al-5Cu and Al-25Cu alloys. The extrusion combined with reversible torsion was carried out using reduction coefficient of λ = 30 and λ = 98. In this work, the microstructure was characterized by light microscopy (LM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Compression test and tensile test were performed for deformed alloys. The binary Al-5Cu and Al-25Cu alloys consist of the face cantered cubic (FCC) α phase in the form of dendrites and tetragonal (C16) θ-Al2Cu intermetallic phase observed in interdentritic regions. The increase of Cu content leads to increase of interdentritic regions. The microstructure of the alloys is refined after applying KoB deformation with λ = 30 and λ = 98. Ultimate Tensile Strength (UTS) of Al-5Cu alloy after KoBo deformation with λ = 30 and λ = 98 reached about 200 MPa. UTS for samples of Al-25Cu with λ = 30 and λ = 98 increased compared to Al-5Cu alloy and exceed 320 MPa and 270 MPa respectively. All samples showed increase of plasticity with increase of reduction coefficient. Independently of reduction coefficient, the compressive strain of Al-5Cu alloys is about 60%. The Al-25Cu alloy with λ = 98 showed the value of compressive strain exceed 60%, although for this same alloy but with λ = 30, the compressive strain is only 35%.

Go to article

Authors and Affiliations

K. Rodak
A. Brzezińska
J. Sobota
Download PDF Download RIS Download Bibtex

Abstract

Corrosion is a main problem for longtime exploration of heat exchangers in automotive industry. Proper selection of accelerated corrosion test for newly developed material is a key aspect for aluminum industry. The selection of material based on corrosion test includes test duration, chemical spray composition, temperature and number of cycles. The paper present comparison of old and newly developed accelerated corrosion tests for testing automotive heat exchanger. The accelerated test results are comprised with heat exchanger taken from market after life cycle.

Go to article

Authors and Affiliations

Ł. Biało
T. Grodniewicz
P. Żabiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulding sands based on inorganic binders hardened in a microwave chamber in the technology of ablation casting of aluminium alloys. The essence of the ablation casting technology consists in this that a mould with a water-soluble binder is continuously washed with water immediately after being poured with liquid alloy until its complete erosion takes place. The application of an environmentally friendly inorganic binder improves the ecology of the whole process, while microwave hardening of moulding sands allows moulds to be made from the sand mixture containing only a small amount of binder.

The studies described in this article included microwave-hardened sand mixtures containing the addition of selected inorganic binders available on the market. The strength of the sands with selected binders added in an amount of 1.0; 1.5 and 2.0 parts by mass was tested. As a next step, the sand mixtures with the strength optimal for ablation casting technology, i.e. about 1.5 MPa, were selected and tested for the gas forming tendency. In the four selected sand mixtures, changes occurring in the samples during heating were traced. Tests also included mould response to the destructive effect of ablation medium, which consisted in the measurement of time necessary for moulds to disintegrate while washed with water. Tests have shown the possibility of using environmentally friendly, microwave-hardened moulding sands in ablation casting of aluminium alloys.

Go to article

Authors and Affiliations

S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The presented access the influence of Mn content (0-0.94 wt.%) on the course of the cooling curves, phase transformation, macrostructure, and microstructure of Al-Cu alloys for three series: initial (Series I), with the addition of an AlTi master (Series II), and modified with AlTi5B1 (Series III). The maximum degree of undercooling ΔT was determined based on the cooling curves. The surface density of the grains (NA) was determined and associated with the inverse of solidification interval 1/ΔTk. Titanium (contained in the charge materials as well as the modifier) has a significant effect on the grinding of the primary grains in the tested alloys. A DSC thermal analysis allowed for the determination of phase transition temperatures under conditions close to equilibrium. For series II and III, the number of grains decreases above 0.2 wt.% Mn with a simultaneous increase in solidification interval 1/ΔTk. The presence of Al2Cu eutectics as well as the Cu-, Fe-, and Mn-containing phases in the examined samples was demonstrated using scanning electron microscopy.

Go to article

Authors and Affiliations

S. Stąpór
M. Górny
M. Kawalec
B. Gracz
Download PDF Download RIS Download Bibtex

Abstract

This study is devoted to synthesis and characterization of uranium dioxide microspheres (Ø < 100 µm) and pellets by application of powder-free process called the Complex Sol-Gel Process. The precursors of prepared sols were ascorbic acid solution with dissolved a freshly precipitated ammonium diuranate. The microspheres of uranyl-ascorbate gel were obtained using the ICHTJ Process. The pellets were formed by pressing and sintering of uranium dioxide powder. Studies allowed determining an optimal heat treatment of calcination, reduction and sintering processes at temperatures of 700°C, 900°C and 1300°C, respectively. The main parameters which play a key role in the process of synthesis method and features of the pellets and microspheres of uranium dioxide are described in this article.

Go to article

Authors and Affiliations

M. Brykala
M. Rogowski
D. Wawszczak
T. Olczak
T. Smolinski
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the lead-free BaTi1-xZrxO3 (for x = 0, 0.05 and 0.15) ceramics were prepared by High-Energy Ball Milling and heat treatments. The performed X-ray, SEM and EDS measurements confirmed high purity, good quality and the expected quantitative composition of the obtained samples. The study of dielectric properties was performed by means of broadband dielectric spectroscopy at the frequency ranging from 0.1 Hz to 10 MHz. The obtained measurement data, analyzed in accordance with the Arrhenius formalism demonstrated the presence of relaxation type dielectric mechanisms. The impedance answer of studied ceramic materials indicated the presence of two relaxation processes: one with a dominant resistive component and the other with a small capacitive component. The observed dielectric relaxation process is temperature dependent and has a “non-Debye” character.

Go to article

Authors and Affiliations

B. Garbarz-Glos
W. Bąk
A. Budziak
P. Dulian
A. Lisińka-Czekaj
D. Czekaj
Download PDF Download RIS Download Bibtex

Abstract

The low adherence of diamond-like carbon (DLC) films on titanium (Ti) alloys can be improved by using interlayer coatings. In this study, DLC (a-C:H) films were deposited using radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD), and a TiCN interlayer was applied between the extra low interstitial (ELI) grade of Ti-6Al-4V alloy and a-C:H film. The characteristics of the a-C:H-coated Ti-6Al-4V ELI alloy were investigated using field emission scanning electron microscopy, Vickers hardness, and scratch and wear tests. The DLC (a-C:H) films deposited by rf-PECVD had a thickness of 1.7 µm, and the TiCN interlayer had a thickness of 1.1 µm. Vickers hardness of the DLC (a-C:H) films were increased as a result of the influence of the TiCN interlayer. The resulting friction coefficient of the a-C:H-coated Ti-6Al-4V with the TiCN interlayer had an extremely low value of 0.07.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Seokil Kang
Download PDF Download RIS Download Bibtex

Abstract

A superior SiC based thermal protection coating process for carbon composite, which can be especially effective in a hot oxidizing atmosphere, was established in this study. A multi-coating process based on a combination of Chemical Vapor Reaction (CVR) and Chemical Vapor Deposition (CVD) was developed. Various protective coating layers on carbon composite were tested in hot oxidizing surroundings and the test results verified that the thermal ablation rate could be dramatically reduced down to 3.8% when the protective multi-coating was applied. The thermal protection mechanism of the coating layers was also investigated.

Go to article

Authors and Affiliations

Soo Bin Bae
ORCID: ORCID
Ji Eun Lee
ORCID: ORCID
Jong Gyu Paik
Nam Choon Cho
ORCID: ORCID
Hyung Ik Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sections of the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25℃, 300℃, and 600℃ revealed that it had a higher hardness than the conventional annealed SKD61.

Go to article

Authors and Affiliations

Jong-Youn Son
Gwang-Yong Shin
Ki-Yong Lee
Hi-Seak Yoon
Do-Sik Shim
Download PDF Download RIS Download Bibtex

Abstract

In the paper presents two new patented of unconventional methods author’s and sleeve-type products of extruding [PL219182, PL221425]. The extrusion methods have been developed with the aim of reducing the energy and force parameters during the plastic forming of material. Traditional methods of extruding similar products are characterized by considerably higher extrusion force magnitudes. This results in substantial limitations and problems of an engineering nature. Moreover, the proposed methods of producing bottomed and bottomless sleeves are distinguished by the capability to minimize or totally eliminate the waste. The author’s methods of extruding long bottomless sleeves, presented herein, were used for developing a method for shaping inner toothing in spline sleeves. The theoretical analysis is based on thermomechanical simulation of the possibility of applying such processes to the extrusion of spline shafts with inner toothing. Next, the obtained results were compared with analogous parameters for classical indirect extrusion. The possibility of shaping inner toothing over the entire product length according to the proposed spline sleeve plastic forming methods was also explored.

Go to article

Authors and Affiliations

J. Michalczyk
S. Wiewiórowska
Download PDF Download RIS Download Bibtex

Abstract

The article will be focused on analysis of properties of aluminum alloy for the casting of type Al-Mg. As an experimental material was used aluminum alloy EN AC 51200, supplied in a cast state without a heat treatment. It was produced by the continuous casting method. Experiments deal with microstructural material analysis, fractographic analysis, mechanical and fatigue tests. The microstructure of the testing sample was examined using an optical microscope Neophot 32. Fatigue properties of aluminum alloy was tested by three-point bending cyclic loading. The fracture surface of the testing sample was examined using scanning electron microscopy (SEM), where sample was observed on various stages of the fatigue process, its characteristics and differences of fracture surfaces.

Go to article

Authors and Affiliations

M. Uhríčik
ORCID: ORCID
P. Palček
M. Chalupová
ORCID: ORCID
P. Hanusová
L. Kuchariková
ORCID: ORCID

This page uses 'cookies'. Learn more