Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 51
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this case ceramic layers from Metco ZrO2 and Al2O3 powders mixture (25/75; 50/50 and 75/25) were obtained through atmospheric plasma spraying (APS) after five passes on low carbon steel substrate. The sample surfaces mechanically grinded (160-2400) before and after ceramic layer deposition. Powder’s mixtures and the surface of ceramic thin layers were analyzed through: scanning electron microscopy (SEM). In order to understand the effect of surface wettability of the ceramic layers, before and after grinding the surface, three different liquids were used. Experimental results confirm the modification of the steel substrate surface characteristic from hydrophilic to hydrophobic when the ceramic layer was deposited. Surface free energy of hydration increases for all the samples with zirconia percentage addition before polishing process.
Go to article

Authors and Affiliations

M. Luțcanu
1 2
ORCID: ORCID
M. Coteață
3
ORCID: ORCID
M.A. Bernevig
1
ORCID: ORCID
C.D. Nechifor
2
ORCID: ORCID
M.M. Cazacu
2
ORCID: ORCID
P. Paraschiv
4
ORCID: ORCID
B. Istrate
5
ORCID: ORCID
G. Bădărău
1
ORCID: ORCID
I.G. Sandu
1
ORCID: ORCID
N. Cimpoeșu
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  2. "Gheorghe Asachi” Technical University of Iasi, Department of Physics, 700050 Iasi, Romania
  3. Gheorghe Asachi Tech Univ Iasi, Dept Machine Mfg Technol, 59A D Mangeron Blvd, Iasi 700050, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Department of Sport, 700050 Iasi, Romania
  5. Gheorghe Asachi Tech Univ Iasi, Fac Mech Engn 43 D Mangeron St, Iasi 700050, Romania
Download PDF Download RIS Download Bibtex

Abstract

AlCrFeCuCoNi high entropy particles were alloyed on Ti-6Al-4V surface using Plasma transferred arc (PTA) process. PTA alloyed surfaces were investigated for their phase formation, microhardness improvement and wear behaviour. The various wear mechanism and their corresponding surface roughness were studied. The results revealed that the dual phase of BCC and FCC microstructure along with some intermetallic compounds were grown in the alloyed region through the PTA technique and good metallurgical bonding of the alloyed region with the base material were achieved. The PTA alloyed region exhibited a hardness of 718 HV0.2 which is 2.2 times higher than the hardness of base material. The PTA alloyed samples showed higher wear resistance due to the solid solution strengthening as the HEA has high entropy of mixing that leads to the reduction of free energy of the alloyed region. It exhibited better interconnection of the coated material and superior metallurgical bonding to the base material. Frictional heat produced during the wear test has promoted the formation of FeO, Cr2O3, CuO, NiO and Al2O3 oxide film on the PTA alloyed sample. These oxide films act as a barrier between two mating surfaces and improve the tribo performance of the PTA alloyed sample.
Go to article

Authors and Affiliations

G. Prabu
1
Muthukannan Duraiselvam
1

  1. National Institute of Technology, Department of Production Engineering, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

In the past decades, Mg alloys have been studied intensively as potential orthopedic applications. The present research work, the FEA of the obtained contact stresses in the case of the load applied on Mg-0.5Ca-xMn alloys has been investigated. It has been used the NCB Curved Femur Shaft Plate type as a model in order to establish the necessary modeling parameters. The objective of the present work was to highlight the strain values at the contact point on the surface of the Mg-0.5Ca-xMn alloys. The results showed that the highest stresses observed near the gaps of the plate and in the screws. It means that all mechanical loads are sustained by the plate and screws, and the patient’s femur can be recovered.
Go to article

Authors and Affiliations

R.O. Nastasa
1
ORCID: ORCID
A. Tufescu
1
ORCID: ORCID
C. Munteanu
1 2
ORCID: ORCID
B. Istrate
1
ORCID: ORCID
A. Przybył
3
ORCID: ORCID
G. Ianus
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University, Faculty of Mechanical Engineering, Blvd. Mangeron, No. 43, 700050, Iasi, Romania
  2. Technical Science Academy of Romania, 26 Dacia Blvd, Bucharest 030167, Romania
  3. Częstochowa University of Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 magnesium alloy were butt-welded using a CO2 laser. The non-equilibrium solidification of the laser-melted metal caused fragmentation of the weld microstructure as well as the supersaturation of a solid solution of aluminium in magnesium, which enabled the T5 ageing of the weld. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens, both as-welded and post-weld T5 aged, fractured outside it. During the ageing of the supersaturated joint, which involved heat treating it to the T6 condition, the weld was the region where discontinuous precipitation was observed and this was the location of fracture in the tensile specimens. Thus, the strength properties of welded, supersaturated and aged AZ91 were much worse than when the non-welded material was T6 tempered.
Go to article

Authors and Affiliations

A. Dziadoń
1
ORCID: ORCID
E. Musiał
1

  1. Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Effect of annealing treatment on deep drawing behavior of hot-rolled Q235 carbon steel/410/304 stainless steel three-layer composite plate was investigated. Deep drawability of the unannealed composite plates exhibits a sharp difference for various contact surfaces with the die. The limit drawing ratio (LDR) of the composite plate with the carbon steel contacting the die is 1.75, while it is 1.83 with the stainless steel contacting the die due to the different mechanical responses to the tensile stress at the corner of the die. After annealing at 900°C for 2 h, however, the deep drawabilities of the composite plates both for various contact surfaces with the die are significantly improved and becomes almost identical, which are attributed to the stress relief, the enhanced ductility and the improved interface bonding strength of the hot-rolled component plates during annealing.
Go to article

Authors and Affiliations

Zehua Lv
1 2 3
Zhixiong Zhang
1 2 3
Jianchao Han
1 2 3
Tao Wang
1 2 3
ORCID: ORCID

  1. Taiyuan University of Technology, College of Mechanical and Vehicle Engineering, Taiyuan 030024, PR China
  2. Taiyuan University of Technology, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan 030024, PR China
  3. Taiyuan University of Technology, Tyut-Uow Joint Research Centre, Taiyuan 030024, PR China
Download PDF Download RIS Download Bibtex

Abstract

The effects of hydrogen absorption and manganese substitution on structural, electronic, optical, and thermoelectric properties of silicon-carbon nanotubes (SiCNT) are studied using the density functional theory and the GGA approximation. An examination of the PDOS curves and the electronic band structure showed that the Mn substitution leads to an increase in magnetic anisotropy and the occurrence of semi-metallic behavior and that the hydrogen absorption shifts the band gap toward the lower energies. A study of these nanostructures’ thermoelectric behavior reveals that the H absorption leads to a significant escalation in the figure of merit of the SiCNT to about 1.6 in the room temperature range. The effects of the H absorption on this nanotube’s optical properties, including the dielectric functions and its absorption spectra, are also investigated.
Go to article

Authors and Affiliations

Amir Toofani Shahraki
1
Heydar Ali Shafiei Gol
1
Salimeh Kimiagar
2
Naser Zare Dehnavi
1

  1. Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  2. Nano Research Lab (NRL), Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

Quality of 3d model in simple way translates into quality of final product, obtained from 3d printing. 3d CAx software give possibility to create enormous number of shapes – doesn’t matter solids or surfaces. The question is where is the frontier between quality of 3d model and a value for money of the completed print? Is it always necessary to create as good model as possible? This paper will focus on preparation of 3d models, based on primitives and will show connection between quality of mesh, its size and deviations and quality of obtained samples, in same manufacturing conditions.
Go to article

Authors and Affiliations

M. Tagowski
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Technology and Automation, 21. Armii Krajowej Av., 42-201 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The versatile application of titanium alloy in the aerospace industry and it’s hard to machine characteristics focus towards the additive manufacturing. The Ti-6Al-4V alloy is manufactured using the electron beam source with a novel method of prepositioned titanium alloy wires. The tribology of the additive manufactured titanium alloy under dry sliding condition is experimented and analysed using Taguchi technique. The targeted objective of minimum tribological responses are attained with the identified optimal parameters as load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 3000 m for minimum specific wear rate and load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 1000 m for minimum coefficient of friction. Among the parameters tested, load is found to be the dominant factor on the tribology of additively manufactured titanium alloy. The morphological analysis on the worn surface and debris revealed the existence of abrasion, delamination and adhesion wear mechanisms. The increase in the load dominantly showed the appearance of delamination mechanism.
Go to article

Authors and Affiliations

A. Manjunath
1
ORCID: ORCID
V. Anandakrishnan
2
ORCID: ORCID
S. Ramachandra
1
ORCID: ORCID
K. Parthiban
1
ORCID: ORCID
S. Sathish
3
ORCID: ORCID

  1. Gas Turbine Research Establishment, Defence Research & Development Organization, Bangalore, Karnataka-560093, India
  2. Department of Production Engineering, National Institute of Technology Tiruchirapalli, Tiruchirappalli – 620015, Tamil Nadu, India
  3. Department of Mechatronics Engineering, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal – 637215, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.
Go to article

Authors and Affiliations

Ooi Wan-En
1 2
Yun-Ming Liew
1 2
ORCID: ORCID
Heah Cheng Yong
2 3
ORCID: ORCID
Ho Li-Ngee
2 4
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Ong Shee-Ween
1 2
Andrei Victor Sandu
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UNIMAP), Center of Excellence Geopolymer and Green Technology (CEGEOGTECH), Kangar, 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UNIMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  3. Universiti Malaysia Perlis (UNIMAP), Faculty of Mechanical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  4. Universiti Malaysia Perlis (UNIMAP), Centre of Excellence Frontier Materials Research, FRONTMATEKANGAR, 01000 Perlis, Malaysia
  5. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The following article presents the results of selected properties of regranulates of polyamide 6.6, regranules of polyamide contaminated with polypropylene and regranules of polyamide contaminated with silicone. The tested materials came from the reprocessing of polyamides 6.6 originally derived from production of airbags from renowned world producers (material for the research came from production waste). The results of examination were referred to regranulates of uncontaminated polyamide but also obtained from waste from the production of these airbags.
The influence of impurities on properties of regranulates such as their density and melt flow index was assessed. The tests allowed to show a significant impact of impurities on the density but above all on the mass and volume flow rate index which ranged from 47 to 116 g/10 min.
In the case of standardized test specimens selected thermal and mechanical properties were analyzed. Differential scanning calorimetry was used to assess the impact of impurities on the thermal properties of polyamides, allowing primarily identification of materials and impurities (especially polypropylene) as well as characteristic temperatures and the enthalpy of melting of the materials being analyzed. The mechanical properties were assessed using a DMA device. DMA research allowed to determine changes in mechanical properties in a wide temperature range of tested materials. It allowed to obtain full characteristics of changes in material stiffness under the influence of two factors, i.e. temperature and content of impurities, like polypropylene or silicone.
Go to article

Authors and Affiliations

T. Stachowiak
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, Częstochowa 42-200, 69 J.H. Dąbrowskiego Str., Poland
Download PDF Download RIS Download Bibtex

Abstract

This work presents the development of a safer processing route for hard metals. Traditional processing of fine particles under organic solvents presents significant explosion risks. The milling under dichloromethane (DCM) reduces the risks associated with fire hazards. After milling and drying, the samples have been sintered in an industrial sintering furnace under a vacuum at 1380°C. The materials’ characterisation has been done by X-ray diffraction, scanning electron microscopy, particle size analysis, optical microscopy, and by magnetic measurements. The present work results reveal the powders’ appropriate properties after milling and drying and the desired biphasic (Co-WC) phases obtained after sintering, thus proving the feasibility of such a route, therefore the diminishing of specific fire hazards.
Go to article

Authors and Affiliations

H.-F. Chicinaș
1 2
ORCID: ORCID
O.-D. Jucan
1
ORCID: ORCID
R.V. Gădălean
1 2
ORCID: ORCID
G. Conțiu
1 2
ORCID: ORCID
A. Cotai
1
ORCID: ORCID
C.O. Popa
1
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to study the corrosion behavior of Nickel – Base – Dental Alloys in Ringer biological fluid. The Nickel base alloys are widely used for medical purposes, especially for prosthetic works in the field of dentistry. The applied electrochemical methods used for corrosion investigations are Open Circuit Potential, Linear Polarization during time of immersion in order to calculate the polarization resistance and corrosion rate. Potentiodynamic Polarization diagrams was performed to appreciate the passive domain. Ni-Cr Ugirex alloy show a better corrosion resistance in Ringer solution which will be reflected in a longer life of the dental structures made with this alloy as compared to the Ni-Cr Ducinox alloy, which will result in dental structures with a shorter lifespan.
The electrochemical studies has shown that the alloy have a corrosion behavior similar to a passivating alloy, displaying an extensive passivity area due to formation of an oxide film.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID
L. Dragus
1 2
D. Mocanu
1

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
  2. Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, 35 Alexandru. I. Cuza Street., RO-800010, Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

In this paper there are presented some results obtained by open circuit potential and electrochemical impedance spectroscopy measurements from studies performed on the behavior of tribocorrosion on metallic implant biomaterials as: 304L stainless steel, Co/nano-CeO2 nanocomposite layer and Ti6Al4V untreated and oxidized alloy to form a nanoporous TiO2 film. The open circuit potential technique used in measuring the tribocorrosion process provide information on the active or passive behavior of the investigated metallic biomaterial in the biological fluid, before, during friction and after stopping the friction. Thus it clearly show a better behavior of Co/nano-CeO2 nanocomposite coatings as compared with 304L stainless steel to tribocorrosion degradation in Hank solution; as well the better behavior of nanoporous TiO2 film formed annodically on Ti6Al4V alloy surface as compared with untreated alloy to tribocorrosion degradation in artificial saliva Fusayama Meyer. The slight decrease in polarization resistance value resulted from electrochemical impedance spectroscopy measured during friction in the case of the Co/nano-CeO2 nanocomposite layer (four times smaller), compared to 304L stainless steel, whose polarization resistance decreased more than 1000 times during friction shows the higher sensitivity of stainless steel to degradation by tribocorrosion. The same behavior is observed when comparing the polarization resistance of untreated titanium alloy recorded during friction that is about 200 hundred times smaller, while the specific polarization resistance of the oxidized alloy with the nanoporous film of titanium oxide, decreases very little during friction, highlighting the beneficial effect of modifying the titanium alloy by anodic oxidation to increase its resistance to the degradation process by tribocorrosion.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

In the domain of the equipment and apparatus construction, a permanent preoccupation worldwide is ensuring technical performances and high fiability in exploitation. The users’ requirement growth in this field led to producing materials with high characteristics such as iron-nickel alloys having a high nickel content with special magnetic, thermal, or elastic properties. The theoretical and experimental researches had the aim of obtaining cold rolled strip, thin (2.6 mm) and narrow (86 mm) from iron-nickel alloys with 41% Ni (low content of C: 0.02-0.04%; Fe: 58%; other elements: Mn, Si, Cu, Cr, Al: under 1%). Our own experiments aimed to establish an optimal cold rolling technology of hot rolled strips of iron-nickel alloys, in order to obtain cold rolled strips with superior mechanical and technological characteristics, strip profile according to current standards, including a finished product characterization.
Go to article

Authors and Affiliations

M. Bordei
1
ORCID: ORCID
B. Tudor
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Faculty of Engineering, Materials and Environmental Quality Research Center (CMM), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

The study investigated the primary structure of the new generation of superalloys based on Co-10Al-5Mo-2Nb and Co-20Ni- 10Al-5Mo-2Nb cobalt. Research on a group of cobalt-based materials was initiated in 2006 by J. Sato [1]. These materials may replace nickel-based superalloys in the future due to their excellent properties at elevated temperatures relative to nickel-based superalloys. The primary microstructure characterisation of the Co-10Al-5Mo-2Nb and Co-20Ni-10Al-5Mo-2Nb alloy are the basic subject of this article. The Co-10Al-5Mo-2Nb and Co-20Ni-10Al-5Mo-2Nb alloy are tungsten free alloys of a new type with the final microstructure based on the Co-based solid solution L12 phase of the Co3(Al,Mo,Nb) type as a strengthened structural element. The analysed alloys were investigated in an as-cast state after a vacuum casting process applied on graphite moulds. The primary microstructure of the alloys and the chemical constituent of dendritic and interdendritic areas were analysed using light, scanning electron and transmission microscopy. Currently, nickel-strengthened γ’ phase steels are still unrivalled in aerospace applications, however, cobalt based superalloys are a response to their existing limitations, which do not allow maintaining the current rate of development of aircraft engines.
Go to article

Authors and Affiliations

M. Kierat
1 2
ORCID: ORCID
G. Moskal
1 3
ORCID: ORCID
A. Zieliński
2
ORCID: ORCID
T. Jung
2
ORCID: ORCID

  1. Silesian University of Technology, Institute of Materials Science, 8 Krasińskiego Str., 40-019 Katowice, Poland
  2. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
  3. Silesian University of Technology, University Zone of Material Innovation, 8 Krasińskiego Str., 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Generally, the metallic implants do not exhibit any bio-integration properties in contact with bone tissues. To improve the interfacial properties of metallic implants in contact with bone, the coatings with thin biocompatible films are used. Two methods to coating titanium implants with hydroxyapatite are described. The first is a two phase method, where by cathodic polarization is deposed a monetite film followed by an alkaline treatment when the monetite is converted to hydroxyapatite. The second method is a biomimetic deposition on an alkaline activate titanium surface, using a five time more concentrated simulated body fluid (5xSBF). After deposition this samples was drying at 120℃ and was sintered at 700℃ for three hours. Optical microscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDX) were used to characterize structure, morphology and compositions of the deposed films. In this study, electrochemical deposition and biomimetic deposition of hydroxyapatite are compared.
Go to article

Authors and Affiliations

M.C. Perju
1 2 3
ORCID: ORCID
C. Nejneru
1
ORCID: ORCID
P. Vizureanu
1 2 3
ORCID: ORCID
A.A. Aelenei
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
L. Sachelarie
4
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID

  1. "Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Prof. D. Mangeron Street, No. 41, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech ), Perlis, Malaysia
  3. Romanian Inventors Forum, Sf. P. Movila 3, Iasi, Romania
  4. Apollonia University of Iasi, Faculty of Dentistry, PACURARI STREET, NO. 11, 700511, Iasi, Romania
  5. Częstochowa University of Technology, Department of Physics , 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s –1, 0.01 s –1 and 0.1 s –1) and dynamic loading rates (650 s –1, 900 s –1 and 1100 s –1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
Go to article

Authors and Affiliations

Mohd Firdaus Omar
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Sam Sung Ting
1 2
ORCID: ORCID
B. Jeż
3
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
Hazizan Md Akil
4
ORCID: ORCID
Nik Noriman Zulkepli
1
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Azida Azmi
2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP),Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-200 Częstochowa, Poland
  4. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Pulau Pinang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

An alternative for Ordinary Portland cement (OPC) consumption is the production and integration of green cement. In other words, the clinker consumption has to be replaced with new low-carbon binders. A possible solution was introduced by the geopolymerisation technology. However, the alkaline activation of geopolymers offers the possibility of obtaining greener materials with high properties, superior to OPC, but due to the high price of sodium silicate, their industrial use is limited. In the past few years, a new activator has been discovered, namely phosphoric acid. This study approaches the obtaining of coal ash-based geopolymers activated with acid solution cured at room temperature. Accordingly, phosphoric acid, 85% by mass, was diluted in distilled water to obtain a corresponding activation solution for H3PO4/Al2O3 ratio of 1.0 and two types of geopolymers were ambient cured (22°C ±2°C). Moreover, to evaluate the geopolymerisation potential of this system (coal ash – phosphoric acid), SEM and EDS analysis was performed to investigate their morphologic characteristics.
Go to article

Authors and Affiliations

D.D. Burduhos Nergis
1
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
S. Lupescu
1
ORCID: ORCID
D.P. Burduhos Nergis
1
ORCID: ORCID
M.C. Perju
1
ORCID: ORCID
A.V. Sandu
1 2
ORCID: ORCID

  1. "Gheorghe Asachi” Technical University of Iasi, Blvd . Mangeron, No. 51, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellence, Geopolymer & Green Technology (CeGeoGTech), School of Material Engineering, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Biodegradable materials represent a new class of biocompatible materials with applications in many medical cases where the support must be provided only for a certain period. In this article obtaining of ZnMgY alloy is presented along with some basic characteristic investigations like chemical composition (energy dispersive spectroscopy – EDS), microstructure (optical microscopy – OM and scanning and electron microscopy – SEM), immersion behavior in 10xDPBS (Dulbecco Phosphate Buffer Saline) solution (mass loss and surface degradation), electro-corrosion behavior (potentiostat with a three electrodes cell) and micro-hardness of the experimental alloy compared to cast Zn and ZnMg materials. The results present an improvement of micro-hardness of Zn by alloying with Mg and Y and a modification of corrosion resistance.
Go to article

Authors and Affiliations

C. Panaghie
1
ORCID: ORCID
N. Cimpoesu
1
ORCID: ORCID
M. Benchea
2
ORCID: ORCID
A.-M. Roman
1
ORCID: ORCID
V. Manole
1
ORCID: ORCID
A. Alexandru
1
ORCID: ORCID
R. Cimpoesu
1
ORCID: ORCID
M.M. Cazacu
3
ORCID: ORCID
I. Wnuk
4
ORCID: ORCID
G. Zegan
5
ORCID: ORCID

  1. Gheorghe Asachi University of Iasi, Faculty of Materials Science Engineering, Prof.dr.doc. D. Mangeron Str., no. 41, Iași 700050, Romania
  2. Gheorghe Asachi University of Iasi, Faculty of Mechanical Engineering, Prof.dr.doc. D. Mangeron Str., No. 61-63, Iași 700050, Romania
  3. Gheorghe Asachi University of Iasi, Department of Physics, Prof.dr.doc. D. Mangeron Str., No. 59A, Iași 700050, Romania
  4. Częstochowa University of Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  5. Grigore T. Popa University of Medicine and Pharmacy, Faculty of Dental Medicine, University Str., No. 16, Iași 700115, Romania
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured systems based on ZnO nanoparticles composite systems/polymer fibers have attracted a lot of attention in the last years because of their applications in multiple areas. Nanofibres based on polymers are used in many domains such as nanocatalysis, controlled release of medicines, environmental protection and so on. This work show the synthesis of cellulose acetate butyrate (CAB) nanofiber useful as substrates for growing ZnO nanocrystals and that ZnO is an unorganic metal oxide nanoparticle used to improve the piezoelectric properties of the polymer. The piezoelectric propertiesof ZnO-doped polymeric was investigated with atomic force microscopy and measurements were performed, in contact technique, in piezoelectric response mode (PFM).In order to analyze the structural and textural features, the obtained materials were characterized using advanced physical-chemical techniques such as X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM). The XRD patterns show the characteristic reflections of ZnO with a hexagonal type wurtzit structure and the broad peaks of the polymer. The SEM images reveal the presence of ZnO nanoparticles on top of the polymer nanofibres.In most ZnO-based nanocomposites their morphology is uncontrolled (agglomerated granules), but in ase of using cellulose acetobutyrate this becomes controlled by observing through flower-like structures SEM and AFM) The study of the functional properties of ZnO/polymer fiber composite systems showed that they have piezoelectric properties which give them the characteristics of smart material with possible sensor and actuator applications.Recent literature reports that the synthesis and characterization of ZnO-polymer nanocomposites are more flexible materials for various applications.
Go to article

Authors and Affiliations

G. Calin
1
ORCID: ORCID
L. Sachelarie
1
ORCID: ORCID
N. Olaru
2
ORCID: ORCID

  1. Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  2. Institute of Macromolecular Chemistry “Petru Poni” Iasi, Aleea Grigore Ghica Voda,41A, 700487, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Setting time in geopolymers is known as the time taken for the transition phase of liquid to solid of the geopolymer system in which is represented in the initial setting and final setting. Setting time is significant specifically for application in the construction field. This study intends to determine the setting time of high calcium fly ash geopolymers and the properties of the geopolymers after setting (1-day age). This includes the determination of heat evolved throughout geopolymerization using Differential Scanning Calorimeter. After setting properties determination includes compressive strength and morphology analysis at 1-day age. High calcium fly ash was used as geopolymer precursor. Meanwhile, for mixing design, the alkali activator was a mixture of sodium silicate and sodium hydroxide (concentration varied from 6M-14M) with a ratio of 2.5 and a solid-to-liquid ratio of 2.5. From this study, it was found that high calcium fly ash geopolymer with 12M of NaOH has a reasonable setting time which is suitable for on-site application as well as an optimal heat evolved (–212 J/g) which leads to the highest compressive strength at 1-day age and no formation of microcracks observed on the morphology. Beyond 12M, too much heat evolved in the geopolymer system can cause micro-cracks formation thus lowering the compressive strength at 1-day age.
Go to article

Authors and Affiliations

Rosnita Mohamed
1
ORCID: ORCID
Rafiza Abd Razak
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Liyana Ahmad Sofri
1
ORCID: ORCID
Ikmal Hakem Aziz
1
ORCID: ORCID
Noor Fifinatasha Shahedan
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the impact of exceeding the railway rails lifespan which usually causes a railway structural failure, thus an accident. The research highlights the rails’s high degradation, especially on the running area, consisting in 60-70% weight loss by advanced wear of the rail, followed by fatigue fracture caused by alternating cyclic stresses that initiates the crack and also by tensile stresses resulting in the crack growth. The chemical composition, structural and mechanical properties were analyzed in order to establish the causes that led to the railway rails rupture.
Go to article

Authors and Affiliations

A.C. Berbecaru
1
ORCID: ORCID
G. Coman
1
ORCID: ORCID
S. Ciucă
1
ORCID: ORCID
I.A. Gherghescu
1
ORCID: ORCID
M.G. Sohaciu
1
ORCID: ORCID
C. Grădinaru
1
ORCID: ORCID
C. Predescu
1
ORCID: ORCID

  1. Politehnica University of Bucharest, Faculty of Materials Science and Engineering, 313 Splaiul Independenței, 060042 Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

The introduction of carbon nanotubes (CNTs) onto glass fibre (GF) to create a hierarchical structure of epoxy laminated composites has attracted considerable interest due to their merits in improving performance and multifunctionality. Field emission scanning electron microscopy (FESEM) was used to analyze the woven hybrid GF-CNT. The results demonstrated that CNT was successfully deposited on the woven GF surface. Woven hybrid GF-CNT epoxy laminated composites were then prepared and compared with woven GF epoxy laminated composites in terms of their tensile properties. The results indicated that the tensile strength and tensile modulus of the woven hybrid GF-CNT epoxy laminated composites were improved by up to 9% and 8%, respectively compared to the woven hybrid GF epoxy laminated composites.
Go to article

Authors and Affiliations

Muhammad Razlan Zakaria
1 2
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
Hazizan Md Akil
3
ORCID: ORCID
Muhammad Bisyrul Hafi Othman
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellent (CEGeoGTech), Perlis, Malaysia
  3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  4. Universiti Sains Malaysia, School of Chemical Sciences, 11800 Minden, Penang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solution were utilized as an alkaline activator with a NaOH fixation fixed at 10 M. The geopolymer inorganic membrane tests were set up with various S/L proportions (0.8, 1.0, 1.2 and 1.4) and Na2SiO3/NaOH proportions (0.5, 1.0, 1.5, 2.0 and 2.5). Aluminium (Al) powder as a foaming agent was used to create bubbles in porous structure and provide details on the development of membrane geopolymers. This metakaolin membrane, based on the geopolymer, was synthesized by a suspension that depends on the fast cementing mechanism of high-temperature slurries. Porous geopolymeric circles provided a homogeneous composition and quantitative distribution of pores. The water absorption, density, impact toughness testing and microstructure analyses were studied. However, considering the promising results, an adjustment in the mix design of the metakaolin inorganic membrane geopolymer mixtures could increase their mechanical properties without negatively affecting the mechanical properties and porosity, making these sustainable materials a suitable alternative to traditional porous cement concrete.
Go to article

Authors and Affiliations

Masdiyana Ibrahim
1 2
ORCID: ORCID
Wan Mastura Wan Ibrahim
2 3
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Ahmad Syauqi Sauffi
1 2
ORCID: ORCID
Petrica Vizureanu
4
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, 02100, Padang Besar, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
  4. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania

This page uses 'cookies'. Learn more