Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Energy storage systems (ESS) are indispensable in daily life and have two types that can offer high energy and high power density. Hybrid energy storage systems (HESS) are obtained by combining two or more energy storage units to benefit both types. Energy management systems (EMS) are essential in ensuring the reliability, high performance, and efficiency of HESS. One of the most critical parameters for EMS is the battery state of health (SoH). Continuous monitoring of the SoH provides essential information regarding the system status, detects unusual performance degradations and enables planned maintenance, prevents system failures, helps keep efficiency at a consistently high level, and helps ensure energy security by reducing downtime. The SoH parameter depends on parameters such as depth of discharge (DoD), charge and discharge rate (C-rate), and temperature. Optimal values of these parameters directly affect the lifetime and operating performance of the battery. The proposed adaptive energy management system (AEMS) uses the SoH parameter of the battery as the control input. It provides optimal control by dynamically updating the C-rate and DoD parameters. In addition, the supercapacitor integrated into the system with filter-based power separation prevents deep discharge of the batteries. Under the proposed AEMS control, HESS has been observed to generate 6.31% more energy than a system relying solely on batteries. This beneficial relationship between supercapacitors and batteries efficiently managed by AEMS opens new possibilities for advanced energy management in applications ranging from electric vehicles to renewable energy storage systems.
Go to article

Authors and Affiliations

Gökhan Yüksek
1
ORCID: ORCID
Alkan Alkaya
1
ORCID: ORCID

  1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Ciftlikkoy 33100, Mersin, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Array jet impingement cooling is a significant technology of enhanced heat dissipation which is fit for high heat flux flow with large area. It is gradually applied to the cooling of electronic devices. However, The research on the nozzle array mode and the uniformity of the cooling surface still has deficiencies. Therefore, the influence of heat flux, inlet temperature, jet height, array mode, and diversion structure on jet impingement cooling performance and temperature distribution uniformity is analyzed through numerical calculation. The results show that the heat transfer coefficient of jet impingement cooling increases linearly with the increment of heat flux and inlet temperature. With the increment of the ratio of jet height to nozzle diameter (H/d), the heat transfer coefficient increases first and then decreases, that is, there is an optimal H/d, which makes the heat transfer performance of the array jet impact cooling best. The temperature uniformity of array jet impact cooling is greatly affected by array mode. The improvement effect of nozzle array mode on temperature uniformity is ranked as sequential >staggered >shield >elliptical array. The overall temperature uniformity and heat transfer coefficient are increased by 5.88% and 7.29% compared with the elliptical array. The heat transfer performance can be further improved by adding a flow channel to the in-line array layout, in which the heat transfer coefficient is increased by 6.53% and the overall temperature uniformity is increased by 1.45%.
Go to article

Authors and Affiliations

Nianyong Zhou
1
ORCID: ORCID
Youxin Zhou
1
Yingjie Zhao
1
Qingguo Bao
1
Guanghua Tang
1
Wenyu Lv
1

  1. College of Urban Construction, Changzhou University, Changzhou, China

This page uses 'cookies'. Learn more