Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The root-knot nematode Meloidogyne graminicola is an economically important pest in rice production. The identification of a nematode species is an important basis in nematode management to reduce yield losses by extracting nematode DNA as an early step in molecular identification. This study aimed to investigate the optimal extraction method and number of M. graminicola for nematode genomic analysis based on PCR (polymerase chain reaction) and Sanger sequencing. The DNA extraction methods used in this study were the CTAB, SDS, and commercial kit (GeneAidTM Tissue/Blood DNA Mini Kit). The results revealed that the three DNA extraction methods could be used to analyze the nematode genomics based on PCR and Sanger sequencing using one nematode, both in a second-stage juvenile and a female, equipped with the process of nematode destruction by freezing. This finding was shown by the amplification of all DNA templates with Mg-F3 and Mg-R2 primers through PCR with a size of 370 bp, while Sanger sequencing obtained 372 bp.
Go to article

Authors and Affiliations

Rendyta Morindya
1
Siwi Indarti
1
Alan Soffan
1
ORCID: ORCID
Sedyo Hartono
1

  1. Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests on a new lead-free bronze CuSn4Zn2PS, intended for fittings for contact with drinking water, in which the addition of lead was replaced with sulphur. The subject of the experimental work was the production of semi-finished products from this alloy based on the charge coming entirely from waste generated after machining. A specialized pilot line was used for the tests, and after cleaning, the waste was melted and then were continuously cast in the form of rods and hollow rods. The cleaning efficiency was assessed, and the manufactured semi-finished products were subjected to tests, including the assessment of the chemical and mechanical homogeneity and the structure of the test batch of the semi-finished casting products in terms of the possibility of manufacturing products meeting the requirements of technical specifications. The obtained results, both in terms of a stable chemical composition, homogeneous and reproducible mechanical properties, fully compliant with the specifications for fittings bronzes (CC499K), as well as the lack of faults of the obtained semi-finished products, despite a very large share of waste material, indicate the possibility of using the tested recycling method for the production of semi-products of sulphur bronze, which is an alloy that is relatively difficult to manufacture.
Go to article

Bibliography

[1] Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption, Dz.U.L 435/1 of 23.12.2020.
[2] Acceptance of metallic materials used for products in contact with drinking water, 4MS Common Approach Part B “4MS Common Composition List” Retrieved July, 12, 2022 from http://www.umweltbundesamt.de/en/topics/water/drinking-water/distributing-drinking-water/guidelines-evaluation-criteria.
[3] DIN SPEC 2701:2018.
[4] Haake, M., Hansen, A., Leistritz, F. (2019). EP Patent No. EP 3436615. Germany. The German Patent and Trade Mark Office.
[5] PN-EN 1982:2017 Copper and copper alloys - Ingots and castings
[6] Wieland G05, GD1, GS1, SW3 material specification. Retrieved 12, July, 2022 from https://www.wieland.com/en/content/download/.
[7] Marek, W., Kopańska, D., Bieniek, J., Wróbel, D., Stolorz, K., Filipowicz, A., Malec, W., Cwolek, B., Brudny, A., Juszczyk B., Kulasa, J. (2022). PL Patent application No. PL 436188. Poland. The Patent Office of the Republic of Poland.
[8] Cwolek, B., Malec, W., Brudny, A., Kulasa, J., Marek, W., Stolorz, K., Wróbel, D. & Filipowicz, A. (2022). Development of process conditions for the preparation of copper alloys post-production chips for the continuous casting process. Archives of Foundry Engineering. (in publication).
[9] PN-EN 12861:2018-07 Copper and copper alloys – Scrap.
[10] Hansen, A. (2019). Bleifreier rotguss als armaturen-und installationswerkstoff in der trinkwasserinstallation. METALL – Forschung. 73(11), 452-455.

Go to article

Authors and Affiliations

W. Malec
1
ORCID: ORCID
B. Cwolek
1
ORCID: ORCID
A. Brudny
1
ORCID: ORCID
B. Juszczyk
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
A. Hury
1
ORCID: ORCID
W. Marek
2
K. Stolorz
2
D. Wróbel
2
A. Filipowicz
2

  1. Łukasiewicz Research Network — Institute of Non-Ferrous Metals, Poland
  2. COGNOR S.A. Oddział OM Szopienice w Katowicach, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the assumptions and methodology for investigating equivalent heat load testing of hot aircraft engine components. The basic heat loads occurring in an aircraft engine during aircraft flight are characterised. Diagrams of the proposed heat loads are presented, together with the number of cycles, and a test bench is characterised and shown to enable equivalent heat load testing of aircraft engine components.
Go to article

Bibliography

[1] Hejwowski, T., Weroński, A. (2000). Manufacture of wear-resistant coatings. Lublin: Politechnika Lubelska. (in Polish).
[2] Research stand in WSK PZL Rzeszów.
[3] Chaur, - Jeng Wang, & Jiaun, - Sheng Lin (2002). The oxidation of MAR M247 superalloy with Na2SO4 coating. Materials Chemistry and Physics. 76, 123-129. DOI: 10.1016/S0254-0584(01)00527-2.
[4] Goebel, J.A., Petit, F.S. & Howard, G.W. (1973). Mechanism for the hot corrosion of nickel base alloys. Metallurgical Transactions. 4, 261-270. https://doi.org/10.1007/BF02649626.
[5] Su, C.Y., Lih, W.C., Chou, C.P. & Tsai, H.C. (2001). Activated diffusion brased repair for IN 738 hot section components of gas turbine. Journal of Materials Processing Technology. 115(3), 326-332.

Go to article

Authors and Affiliations

Marek Mróz
ORCID: ORCID
A.W. Orłowicz
1
ORCID: ORCID
M. Tupaj
1
ORCID: ORCID
M. Lenik
1
ORCID: ORCID

  1. Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation, the influence of addition of the rare earth element samarium (Sm) in different concentrations (0, 0.1, 0.3, 0.5, 0.7 and 0.9wt.%) on the microstructure and tensile properties of the Al-Si-Cu 319 alloy have been evaluated. Microstructural constituents such as SDAS of α-Al and characteristics of eutectic silicon particles were observed by optical microscopy. It was concluded from the findings that Sm addition reduces the size of secondary dendrite arm spacings (SDAS) and altered the morphology of the eutectic silicon particles from needle-like to lamellar and smaller segments. The tensile properties of the Al-Si-Cu 319 alloy improved with the concentration of Sm. It was found that the highest tensile properties were obtained at 0.7wt.% addition of Sm, i.e., 55.5% higher than unmodified 319 alloy. With the further addition of the Sm above 0.7wt.%, it does not improve the tensile properties of the alloy. This can be attributed to the precipitation of the brittle and needle like quaternary Sm-rich intermetallic compounds observed through Scanning electron microscopy.
Go to article

Bibliography

[1] ASM Handbook Committee. (1990). Properties and selection: nonferrous alloys and special-purpose materials (pp. 597-599). ASM International.
[2] Hernandez, F.C.R., Ramírez, J.M.H., Mackay, R. (2017). Al-Si alloys: automotive, aeronautical, and aerospace applications. Springer International Publishing. Retrieved 30 April 2022 from Springer link http://link.springer.com/10.1007/978-3-319-58380-8.
[3] Alkahtani, S. (2012). Mechanical performance of heat treated 319 alloys as a function of alloying and aging parameters. Materials & Design. 41, 358-369. https://doi.org/10.1016/j.matdes.2012.04.034.
[4] Javidani, M. & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158. https://doi.org/10.1179/1743280413Y.0000000027.
[5] Lombardi, A., Ravindran, C. & MacKay, R. (2015). Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Materials Science and Engineering: A, 633, 125-135. https://doi.org/10.1016/j.msea.2015.02.076.
[6] Hegde, S. & Prabhu, K.N. (2008). Modification of eutectic silicon in Al–Si alloys. Journal of materials science. 43(9), 3009-3027. https://doi.org/10.1007/s10853-008-2505-5.
[7] Sigworth, G.K. (2008). The modification of Al-Si casting alloys: important practical and theoretical aspects. International Journal of Metalcasting. 2(2), 19-40. https://doi.org/10.1007/BF03355425.
[8] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Doty, H.W., Songmene, V. & Samuel, F.H. (2021). Effect of rare earth metals (Ce and La) addition on the performance of Al-Si-Cu-Mg Cast Alloys. International Journal of Metalcasting. 1-27. https://doi.org/10.1007/s40962-021-00669-6.
[9] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Songmene, V. & Samuel, F.H. (2022). The use of rare earth metals in Al–Si–Cu casting alloys. International Journal of Metalcasting. 16(2), 535-552. https://doi.org/10.1007/s40962-021-00640-5.
[10] Patel, D.N. & Sutaria, M.P. (2022). Effect of Trace Rare Earth Er Addition on Microstructure and Tensile Properties of 319 Al-Si-Cu Alloy. International Journal of Metalcasting. 16, 2199–2209. https://doi.org/10.1007/s40962-021-00730-4.
[11] Xu, C., Xiao, W., Hanada, S., Yamagata, H. & Ma, C. (2015). The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: A multi-refinement modifier. Materials Characterization. 110, 160-169. https://doi.org/10.1016/j.matchar.2015.10.030.
[12] Mao, F., Yan, G., Xuan, Z., Cao, Z. & Wang, T. (2015). Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. Journal of Alloys and Compounds. 650, 896-906. https://doi.org/10.1016/j.jallcom.2015.06.266.
[13] Nie, Z.R., Jin, T., Fu, J., Xu, G., Yang, J., Zhou, J.X. & Zuo, T.Y. (2002). Research on rare earth in aluminum. Materials Science Forum. 396-402, 1731-1740. https://doi.org/10.4028/www.scientific.net/MSF.396-402.1731.
[14] Nie, Z. R., Fu, J.B., Zou, J.X., Jin, T.N., Yang, J.J., Xu, G. F., Ruan, H. Q. & Zuo, T.Y. (2004). Advanced aluminum alloys containing rare-earth erbium. Materials forum. 28, 197-201.
[15] Hu, Z., Yan, H. & Rao, Y.S. (2013). Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy. Transactions of Nonferrous Metals Society of China. 23(11), 3228-3234. https://doi.org/10.1016/S1003-6326(13)62857-5.
[16] Qiu, H., Yan, H. & Hu, Z. (2014). Modification of near-eutectic Al–Si alloys with rare earth element samarium. Journal of Materials Research. 29, 1270-1277. https://doi.org/10.1557/jmr.2014.113.
[17] Qiu, H., Yan, H., & Hu, Z. (2013). Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. Journal of Alloys and Compounds. 567, 77-81. https://doi.org/10.1016/j.jallcom.2013.03.050.
[18] Rao, Y., Yan, H., & Hu, Z.(2013). Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition. Journal of Rare Earths. 31(9), 916-922. https://doi.org/10.1016/S1002-0721(12)60379-2.
[19] Li, Q., Li, J., Li, B., Lan, Y. & Xia, T. (2018). Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20% Si casting alloy. International Journal of Metalcasting. 12, 554-564. https://doi.org/10.1007/s40962-017-0193-0.
[20] Ibrahim, M.F., Abdelaziz, M.H., Samuel, A.M., Doty, H. W. & Samuel, F.H. (2020). Effect of rare earth metals on the mechanical properties and fractography of Al–Si-based alloys. International Journal of Metalcasting. 14, 108-124. https://doi.org/10.1007/s40962-019-00336-x.
[21] Mahmoud, M.G., Samuel, A.M., Doty, H.W. & Samuel, F.H. (2020). Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. International Journal of Metalcasting. 14, 191-206. https://doi.org/10.1007/s40962-019-00351-y.
[22] Pandee, P., Patakham, U. & Limmaneevichitr, C. (2017). Microstructural evolution and mechanical properties of Al-7Si-0.3 Mg alloys with erbium additions. Journal of Alloys and Compounds. 728, 844-853. https://doi.org/10.1016/j.jallcom.2017.09.054.
[23] Sigworth, G.K. & Kuhn, T.A. (2007). Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 1, 31-40. https://doi.org/10.1007/BF03355416.
[24] Basak, S., Biswas, P., Patra, S., Roy, H. & Mondal, M.K., (2021). Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6 Si alloy. International Journal of Minerals, Metallurgy and Materials. 28(7), 1174-1185. https://doi.org/10.1007/s12613-020-2070-8.
[25] Liu, Y.X., Wang, R.C., Peng, C.Q., Cai, Z.Y., Zhou, Z.H., Li, X.G. & Cao, X.Y. (2021). Microstructures and mechanical properties of in-situ TiB2/Al− xSi− 0.3 Mg composites. Transactions of Nonferrous Metals Society of China. 31(2), 331-344. https://doi.org/10.1016/S1003-6326(21)65499-7.
[26] Li, Z., Hu, Z. & Yan, H. (2016). Effect of samarium (Sm) addition on microstructure and mechanical properties of Al-5Cu alloys. Journal of Wuhan University of Technology-Materials Science Ed. 31(3), 624-629. https://doi.org/10.1007/s11595-016-1420-x.
[27] Ferdian, D., Pratama, J. R. & Pratesa, Y. (2019). Effect of samarium on microstructure and intermetallic formation in Al-5Zn-0.5 Si alloy. IOP Conference Series: Materials Science and Engineering. 541(1), 012024. DOI: 10.1088/1757-899X/541/1/012024.
[28] Lu, S.Z., & Hellawell, A. (1987). The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metallurgical transactions A. 18(10), 1721-1733. https://doi.org/10.1007/BF02646204.
[29] Hume-Rothery, W., Smallman, R.E., Haworth, C.W. (1969). Structure of Metals and Alloys. London: Institute of Metals and the Institution of Metallurgists.

Go to article

Authors and Affiliations

D.N. Patel
1
M.P. Sutaria
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India

This page uses 'cookies'. Learn more