Search results

Filters

  • Journals
  • Autorzy
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 8572
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

User authentication is an essential element of any communication system. The paper investigates the vulnerability of the recently published first semiquantum identity authentication protocol (Quantum Information Processing 18: 197, 2019) to the introduced herein multisession attacks. The impersonation of the legitimate parties by a proper combination of phishing techniques is demonstrated. The improved version that closes the identified loophole is also introduced
Go to article

Bibliography

  1.  M.M. Wilde, Quantum Information Theory. Cambridge University Press, 2013, doi: 10.1017/CBO9781139525343.
  2.  S. Wiesner, “Conjugate coding,” SIGACT News, vol. 15, no. 1, pp. 78–88, 1983, doi: 10.1145/1008908.1008920.
  3.  P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563–591, 1980, doi: 10.1007/BF01011339.
  4.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.
  5.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, 2014, doi: 10.1016/j.tcs.2014.05.025.
  6.  P.W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.
  7.  A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: Key distribution and beyond,” Quanta, vol. 6, no. 1, pp. 1–47, 2017, doi: 10.12743/quanta.v6i1.57.
  8.  F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys., vol. 92, p. 025002, 2020, doi: 10.1103/RevModPhys.92.025002.
  9.  D. Pan, K. Li, D. Ruan, S.X. Ng, and L. Hanzo, “Singlephoton- memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs,” IEEE Access, vol. 8, pp. 121 146–121 161, 2020, doi: 10.1109/ACCESS.2020.3006136.
  10.  P. Zawadzki, “Advances in quantum secure direct communication,” IET Quant. Comm., vol. 2, no. 2, pp. 54–62, 2021, doi: 10.1049/ qtc2.12009.
  11.  A. Pljonkin and P.K. Singh, “The review of the commercial quantum key distribution system,” in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, pp. 795–799, doi: 10.1109/PDGC.2018.8745822.
  12.  R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. Long, “Implementation and security analysis of practical quantum secure direct communication,” vol. 8, p. 22, 2019, doi: 10.1038/s41377-019-0132-3.
  13.  X. Li and D. Zhang, “Quantum authentication protocol using entangled states,” in Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, 2006, pp. 1004–1009. [Online]. Available: https://www.researchgate.net/ publication/242080451_Quantum_authentication_protocol_using_entangled_states.
  14.  G. Zeng and W. Zhang, “Identity verification in quantum key distribution,” Phys. Rev. A, vol. 61, p. 022303, 2000, doi: 10.1103/ PhysRevA.61.022303.
  15.  Y. Kanamori, S.-M. Yoo, D.A. Gregory, and F.T. Sheldon, “On quantum authentication protocols,” in GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., vol. 3, 2005, pp. 1650–1654, doi: 10.1109/GLOCOM.2005.1577930.
  16.  P. Zawadzki, “Quantum identity authentication without entanglement,” Quantum Inf. Process., vol. 18, no. 1, p. 7, 2019, doi: 10.1007/ s11128-018-2124-2.
  17.  M. Boyer, D. Kenigsberg, and T. Mor, “Quantum key distribution with classical Bob,” Phys. Rev. Lett., vol. 99, p. 140501, 2007, doi: 10.1103/PhysRevLett.99.140501.
  18.  M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, “Semiquantum key distribution,” Phys. Rev. A, vol. 79, no. 3, p. 032341, 2009, doi: 10.1103/PhysRevA.79.032341.
  19.  W.O. Krawec, “Security of a semi-quantum protocol where reflections contribute to the secret key,” Quantum Inf. Process., vol. 15, no. 5, pp. 2067–2090, 2016, doi: 10.1007/s11128-016-1266-3.
  20.  Z.-R. Liu and T. Hwang, “Mediated semi-quantum key distribution without invoking quantum measurement,” Ann. Phys., vol. 530, no. 4, p. 1700206, 2018, doi: 10.1002/andp.201700206.
  21.  C.-W. Tsai and C.-W. Yang, “Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise,” Int. J. Theor. Phys., vol. 58, no. 7, pp. 2244–2250, 2019, doi: 10.1007/s10773-019-04116-5.
  22.  W.O. Krawec, “Security proof of a semi-quantum key distribution protocol,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 686–690, doi: 10.1109/ISIT.2015.7282542.
  23.  Y.-P. Luo and T. Hwang, “Authenticated semi-quantum direct communication protocols using Bell states,” Quantum Inf. Process., vol. 15, no. 2, pp. 947–958, 2016, doi: 10.1007/s11128-015-1182-y.
  24.  J. Gu, P.-h. Lin, and T. Hwang, “Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’,” Quantum Inf. Process., vol. 17, no. 7, p. 182, 2018, doi: 10.1007/s11128-018-1953-3.
  25.  M.-H. Zhang, H.-F. Li, Z.-Q. Xia, X.-Y. Feng, and J.-Y. Peng, “Semiquantum secure direct communication using EPR pairs,” Quantum Inf. Process., vol. 16, no. 5, p. 117, 2017, doi: 10.1007/s11128-017-1573-3.
  26.  L.-L. Yan, Y.-H. Sun, Y. Chang, S.-B. Zhang, G.-G. Wan, and Z.-W. Sheng, “Semi-quantum protocol for deterministic secure quantum communication using Bell states,” Quantum Inf. Process., vol. 17, no. 11, p. 315, 2018, doi: 10.1007/s11128-018-2086-4.
  27.  C. Xie, L. Li, and D. Qiu, “A novel semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 54, no. 10, pp. 3819– 3824, 2015, doi: 10.1007/s10773-015-2622-2.
  28.  A. Yin and F. Fu, “Eavesdropping on semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 55, no. 9, pp. 4027– 4035, 2016, doi: 10.1007/s10773-016-3031-x.
  29.  K.-F. Yu, J. Gu, T. Hwang, and P. Gope, “Multi-party semi-quantum key distribution-convertible multi-party semi- quantum secret sharing,” Quantum Inf. Process., vol. 16, no. 8, p. 194, 2017, doi: 10.1007/s11128-017-1631-x.
  30.  X. Gao, S. Zhang, and Y. Chang, “Cryptanalysis and improvement of the semi-quantum secret sharing protocol,” Int. J. Theor. Phys., vol. 56, no. 8, pp. 2512–2520, 2017, doi: 10.1007/s10773-017-3404-9.
  31.  Z. Li, Q. Li, C. Liu, Y. Peng, W. H. Chan, and L. Li, “Limited resource semiquantum secret sharing,” Quantum Inf. Process., vol. 17, no. 10, p. 285, 2018, doi: 10.1007/s11128-018-2058-8.
  32.  K. Sutradhar and H. Om, “Efficient quantum secret sharing without a trusted player,” Quantum Inf. Process., vol. 19, no. 2, p. 73, 2020, doi: 10.1007/s11128-019-2571-4.
  33.  H. Iqbal and W.O. Krawec, “Semi-quantum cryptography,” Quantum Inf. Process., vol. 19, no. 3, p. 97, 2020, doi: 10.1007/s11128-020- 2595-9.
  34.  N.-R. Zhou, K.-N. Zhu, W. Bi, and L.-H. Gong, “Semi-quantum identification,” Quantum Inf. Process., vol. 18, no. 6, p. 197, 2019, doi: 10.1007/s11128-019-2308-4.
  35.  K. Moriarty, B. Kaliski, and A. Rusch, “Pkcs #5: Password-based cryptography specification version 2.1,” Internet Requests for Comments, RFC Editor, RFC 8018, January 2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8018.html.
  36.  A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard Argon2 password hash and proof-of-work function,” Working Draft, IETF Secretariat, Internet-Draft draft-irtf-cfrg-argon2-12, 2020. [Online]. Available: https://tools.ietf.org/id/draft-irtf-cfrg-argon2-03. html.
  37.  P.-H. Lin, T. Hwang, and C.-W. Tsai, “Double CNOT attack on ‘Quantum key distribution with limited classical Bob’,” Int. J. Quantum Inf., vol. 17, no. 02, p. 1975001, 2019, doi: 10.1142/S0219749919750017.
  38.  D. Moody, L. Chen, S. Jordan, Y.-K. Liu, D. Smith, R. Perlner, and R. Peralta, “Nist report on post-quantum cryptography,” National Institute of Standards and Technology, U.S. Department of Commerce, Tech. Rep., 2016, doi: 10.6028/NIST.IR.8105.
  39.  P. Wang, S. Tian, Z. Sun, and N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., vol. 2, no. 2, p. e36, 2020, doi: 10.1002/que2.36.
Go to article

Authors and Affiliations

Piotr Zawadzki
1
ORCID: ORCID

  1. Department of Telecommunications and Teleinformatics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
Go to article

Authors and Affiliations

Sylwia Przybysz
1
Mariusz Kulczyk
1
ORCID: ORCID
Jacek Skiba
1
Monika Skorupska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polyester coatings are among the most commonly used types of powder paints and present a wide range of applications. Apart from its decorative values, polyester coating successfully prevents the substrate from environmental deterioration. This work investigates the cavitation erosion (CE) resistance of three commercial polyester coatings electrostatic spray onto AW-6060 aluminium alloy substrate. Effect of coatings repainting (single- and double-layer deposits) and effect of surface finish (matt, silk gloss and structural) on resistance to cavitation were comparatively studied. The following research methods were used: CE testing using ASTM G32 procedure, 3D profilometry evaluation, light optical microscopy, scanning electron microscopy (SEM), optical profilometry and FTIR spectroscopy. Electrostatic spray coatings present higher CE resistance than aluminium alloy. The matt finish double-layer (M2) and single-layer silk gloss finish (S1) are the most resistant to CE. The structural paint showed the lowest resistance to cavitation wear which derives from the rougher surface finish. The CE mechanism of polyester coatings relies on the material brittle-ductile behaviour, cracks formation, lateral net-cracking growth and removal of chunk coating material and craters’ growth. Repainting does not harm the properties of the coatings. Therefore, it can be utilised to regenerate or smother the polyester coating finish along with improvement of their CE resistance.
Go to article

Bibliography

  1.  A. Kausar, “Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers,” J. Plast. Film Sheeting, vol. 35, no. 1, pp. 22–44, Jan. 2019, doi: 10.1177/8756087918783827.
  2.  A. Krzyzak, E. Kosicka, and R. Szczepaniak, “Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites,” Materials, vol. 13, no. 24, Art. no. 5735, Jan. 2020, doi: 10.3390/ma13245735.
  3.  A. Kausar, “High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review,” J. Plast. Film Sheeting, vol. 36, no. 4, pp. 391–408, Oct. 2020, doi: 10.1177/8756087920910481.
  4.  M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 301–310, Jun. 2018.
  5.  L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, and S. Kozerski, “Review of Functionally Graded Thermal Sprayed Coatings,” Appl. Sci., vol. 10, no. 15, Art. no. 5153, Jan. 2020, doi: 10.3390/app10155153.
  6.  R. Kosydar et al., “Boron nitride/titanium nitride laminar lubricating coating deposited by pulsed laser ablation on polymer surface,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 3, pp. 217–221, 2008.
  7.  T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies. Boca Raton, Fla: CRC Press, 1998.
  8.  T. Hejwowski, Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne (Modern wear and erosion resitant thermally deposited coatings). Lublin, Poland: Politechnika Lubelska (Lublin University of Technology), 2013. [Online]. Available: http://bc.pollub. pl/dlibra/docmetadata?id=4059.
  9.  Z.W. Wicks. Jr, F.N. Jones, S.P. Pappas, and D.A. Wicks, Organic Coatings: Science and Technology. John Wiley & Sons, 2007.
  10.  S. Biggs, C.A. Lukey, G.M. Spinks, and S.-T. Yau, “An atomic force microscopy study of weathering of polyester/melamine paint surfaces,” Prog. Org. Coat., vol. 42, no. 1, pp. 49–58, Jun. 2001, doi: 10.1016/S0300-9440(01)00147-3.
  11.  M. Oleksy et al., “Kompozycje modyfikowanych farb proszkowych. Cz. 1. Hybrydowe kompozycje poliestrowych farb proszkowych,” Polimery, vol. 63, no. 11– 12, pp. 762‒771, 2018, doi: 10.14314/polimery.2018.11.4.
  12.  M. Fernández-Álvarez, F. Velasco, and A. Bautista, “Effect on wear resistance of nanoparticles addition to a powder polyester coating through ball milling,” J. Coat. Technol. Res., vol. 15, no. 4, pp. 771–779, Jul. 2018, doi: 10.1007/s11998-018-0106-z.
  13.  M. Zouari, M. Kharrat, and M. Dammak, “Wear and friction analysis of polyester coatings with solid lubricant,” Surf. Coat. Technol., vol. 204, no. 16, pp. 2593–2599, May 2010, doi: 10.1016/j.surfcoat.2010.02.001.
  14.  I. Stojanović, V. Šimunović, V. Alar, and F. Kapor, “Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media,” Coatings, vol. 8, no. 3, Art. no. 98, Mar. 2018, doi: 10.3390/coatings8030098.
  15.  K.V.S.N. Raju and D.K. Chattopadhyay, “Polyester coatings for corrosion protection,” in High-Performance Organic Coatings, A.S. Khanna, Ed. Woodhead Publishing, 2008, pp. 165–200. doi: 10.1533/9781845694739.2.165.
  16.  M. Szala and E. Kot, “Influence of repainting on the mechanical properties, surface topography and microstructure of polyester powder coatings,” Adv. Sci. Technol. Res. J., vol. 11, no. 2, pp. 159–165, Jun. 2017, doi: 10.12913/22998624/69680.
  17.  M. Walczak, D. Pieniak, and M. Zwierzchowski, “The tribological characteristics of SiC particle reinforced aluminium composites,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 116–123, Jan. 2015, doi: 10.1016/j.acme.2014.05.003.
  18.  M. Szala, L. Łatka, M.Walczak, and M.Winnicki, “Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/ Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass,” Metals, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/met10070856.
  19.  V. Caccese, K.H. Light, and K.A. Berube, “Cavitation erosion resistance of various material systems,” Ships Offshore Struct., vol. 1, no. 4, pp. 309–322, Apr. 2006, doi: 10.1533/saos.2006.0136.
  20.  T. Deplancke, O. Lame, J.-Y. Cavaille, M. Fivel, M. Riondet, and J.-P. Franc, “Outstanding cavitation erosion resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) coatings,” Wear, vol. 328–329, pp. 301–308, Apr. 2015, doi: 10.1016/j.wear.2015.01.077.
  21.  N. Qiu, L. Wang, S. Wu, and D.S. Likhachev, “Research on cavitation erosion and wear resistance performance of coatings,” Eng. Fail. Anal., vol. 55, pp. 208–223, Sep. 2015, doi: 10.1016/j.engfailanal.2015.06.003.
  22.  S. Chi, J. Park, and M. Shon, “Study on cavitation erosion resistance and surface topologies of various coating materials used in shipbuilding industry,” J. Ind. Eng. Chem., vol. 26, pp. 384–389, Jun. 2015, doi: 10.1016/j.jiec.2014.12.013.
  23.  G.L. García et al., “Cavitation resistance of epoxybased multilayer coatings: Surface damage and crack growth kinetics during the incubation stage,” Wear, vol. 316, no. 1–2, pp. 124–132, Aug. 2014, doi: 10.1016/j.wear.2014.04.007.
  24.  M. Hibi, K. Inaba, K. Takahashi, K. Kishimoto, and K. Hayabusa, “Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer,” J. Phys. Conf. Ser., vol. 656, no. 1, p. 012049, Nov. 2015, doi: 10.1088/1742-6596/656/1/012049.
  25.  G. Taillon, S. Saito, K. Miyagawa, and C. Kawakita, “Cavitation erosion resistance of high-strength fiber reinforced composite material,” IOP Conf. Ser. Earth Environ. Sci., vol. 240, no. 6, p. 062056, Mar. 2019, doi: 10.1088/1755-1315/240/6/062056.
  26.  N. Sheppard, “The Historical Development of Experimental Techniques in Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy, American Cancer Society, 2006. doi: 10.1002/0470027320.s0101.
  27.  R.M. Silverstein et al., Spectrometric Identification of Organic Compounds, 8th Edition, 8th edition. Wiley, 2014.
  28.  W. Macek et al., “Profile and Areal Surface Parameters for Fatigue Fracture Characterisation,” Materials, vol. 13, no. 17, Art. no. 3691, 2020, doi: 10.3390/ma13173691.
  29.  “ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters,” International Organization for Standardization, Geneva, Switzerland, Norma, 1997.
  30.  A. Skoczylas, “Influence of Centrifugal Shot Peening Parameters on the Impact Force and Surface Roughness of EN-AW2024 Aluminum Alloy Elements,” Adv. Sci. Technol. Res. J., vol. 15, no. 1, pp. 71–78, Mar. 2021, doi: 10.12913/22998624/130511.
  31.  “ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus,” ASTM International: West Conshohocken, Philadelphia, PA, USA, 2010.
  32.  M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, and D. Özkan, “Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying,” Adv. Mater. Sci., vol. 20, no. 2, pp. 26–38, Jun. 2020, doi: 10.2478/adms-2020-0008.
  33.  J. Steller, A. Krella, J. Koronowicz, and W. Janicki, “Towards quantitative assessment of material resistance to cavitation erosion,” Wear, vol. 258, no. 1, pp. 604–613, Jan. 2005, doi: 10.1016/j.wear.2004.02.015.
  34.  J. Steller, “International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation,” Wear, vol. 233–235, pp. 51–64, Dec. 1999, doi: 10.1016/S0043-1648(99)00195-7.
  35.  B. Dybowski, M. Szala, T. J. Hejwowski, and A. Kiełbus, “Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys,” Solid State Phenom., vol. 227, pp. 255–258, 2015, doi: 10.4028/www.scientific.net/SSP.227.255.
  36.  J. Zhao, Z. Jiang, J. Zhu, J. Zhang, and Y. Li, “Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the DistilledWater,” Metals, vol. 10, no. 12, Art. no. 1631, Dec. 2020, doi: 10.3390/met10121631.
  37.  J. Lin, Z. Wang, J. Cheng, M. Kang, X. Fu, and S. Hong, “Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc- Sprayed Fe-Based Amorphous/Nanocrystalline Coatings,” Coatings, vol. 7, no. 11, Art. no. 2000, Nov. 2017, doi: 10.3390/coatings7110200.
  38.  M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki, and M. Michalak, “Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3‒13 wt% TiO2 Coatings,” Processes, vol. 8, no. 12, Art. no. 1544, Dec. 2020, doi: 10.3390/pr8121544.
  39.  J.C. Lindon, Encyclopedia of Spectroscopy and Spectrometry – 3rd Edition. 2010. [Online]. Available: https://www.elsevier.com/books/ encyclopedia-of-spectro scopy-and-spectrometry/lindon/978-0-12-803224-4 (Accessed: Feb. 24, 2021).
  40.  J.I. Haleem, “A Review of: Handbook of Near-Infrared Analysis,” Instrum. Sci. Technol., vol. 22, no. 3, pp. 283–285, Aug. 1994, doi: 10.1080/10739149408000456.
  41. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, 2004, doi: 10.1002/0470011149.ch3.
Go to article

Authors and Affiliations

Mirosław Szala
1
ORCID: ORCID
Aleksander Świetlicki
2
Weronika Sofińska-Chmiel
3

  1. Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  3. Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a spring system symmetrically arranged around a circular plate compliant to out-of-plane oscillation is proposed. The spring system consists of single serpentine springs mutually coupled in a plane. Three theoretical mechanical models for evaluating the stiffness of the spring system are built, which are based on the flexural beam, Sigitta, and serpentine spring theories and equivalent mechanical spring structure models. The theoretically calculated results are in good agreement with numerical solutions using the finite element method, with errors less than 10% in the appropriate dimension ranges of the spring. Compared to similar spring structures without mechanical coupling, the proposed mechanically coupled spring shows advantage in suppressing the mode coupling.
Go to article

Bibliography

[1] X. Liu, K. Kim, and Y. Sun. A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 17(9):1796–1802, 2007. doi: 10.1088/0960-1317/17/9/007.
[2] R. Legtenberg, A.W. Groeneveld, and M. Elwenspoek. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6(3):320–329, 1996. doi: 10.1088/0960-1317/6/3/004.
[3] S. Abe, M.H. Chu, T. Sasaki, and K. Hane. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technology Letters, 26(15):1553–1556, 2014. doi: 10.1109/lpt.2014.2329033.
[4] T.Q. Trinh, L.Q. Nguyen, D.V. Dao, H.M. Chu, and H.N. Vu, Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsystem Technologies, 20(2):281–289, 2014. doi: 10.1007/s00542-013-1947-0.
[5] Y.J. Huang, T.L. Chang, and H.P. Chou. Novel concept design for complementary metal oxide semiconductor capacitive z-direction accelerometer. Japanese Journal of Applied Physics, 48(7):076508, 2009. doi: 10.1143/jjap.48.076508.
[6] A. Sharaf and S. Sedky. Design and simulation of a high-performance Z-axis SOI-MEMS accelerometer. Microsystem Technologies, 19(8):1153–1163, 2013. doi: 10.1007/s00542-012-1714-7.
[7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sensors and Actuators A: Physical, 75(1):77–85, 1999. doi: 10.1016/s0924-4247(98)00295-7.
[8] D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi. Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 51:259–270, 2003. doi: 10.1109/TMTT.2002.806514.
[9] Y. Liu. Stiffness Calculation of the microstructure with crab-leg flexural suspension. Advanced Materials Research, 317-319:1123–1126, 2011. doi: 10.4028/www.scientific.net/AMR.317-319.1123.
[10] H.M. Chou, M.J. Lin, and R. Chen. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. Journal of Micro/Nanolithography MEMS and MOEMS, 15(3):035003, 2016. doi: 10.1117/1.JMM.15.3.035003.
[11] D.V. Hieu, L.V. Tam, N.V. Duong, N.D. Vy, and C.M. Hoang. Design and simulation analysis of a z axis microactuator with low mode cross-talk. Journal of Mechanics, 36(6):881–888, 2020. doi: 10.1017/jmech.2020.48.
[12] D.V. Hieu, L.V. Tam, K. Hane, and M.H. Chu. Design and simulation analysis of an integrated XYZ micro-stage for controlling displacement of scanning probe. Journal of Theoretical and Applied Mechanics, 59(1):143–156, 2021. doi: 10.15632/jtam-pl/130549.
[13] F. Hu, W. Wang, and J. Yao. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. Micromechanics and Microengineering, 21(11):115029, 2011. doi: 10.1088/0960-1317/21/11/115029.
[14] W. Wai-Chi, A.A. Azid, and B.Y. Majlis. Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5):405–418, 2010.
[15] Y. Cao and Z. Xi. A review of MEMS inertial switches. Microsystem Technologies, 25(12):4405–4425, 2019. doi: 10.1007/s00542-019-04393-4.
[16] K.R. Sudha, K. Uttara, P.C. Roshan, and G.K. Vikas. Design and analysis of serpentine based MEMS accelerometer. AIP Conference Proceedings, 1966:020026, 2018. doi: 10.1063/1.5038705.
[17] H.M. Chou, M.J. Lin, and R. Chen. Fabrication and analysis of awlshaped serpentine microsprings for large out-of-plane displacement. Journal of Micromechanics and Microengineering, 25:095018, 2015. doi: 10.1088/0960-1317/25/9/095018.
[18] C.M. Hoang, and K. Hane. Design fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner. Sensors and Actuators A: Physical, 165(2): 422–430, 2011. doi: 10.1016/j.sna.2010.11.004.
[19] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri. Analysis simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering, 15(4):736–746, 2005. doi: 10.1088/0960-1317/15/4/010.
[20] P.B. Chu, I. Brener, C. Pu, S.S. Lee, J.I. Dadap, S. Park, K.Bergman et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. Journal of Microelectromechanical Systems, 14(2):261–273, 2005. doi: 10.1109/JMEMS.2004.839827.
[21] G.D.J. Su, S.H. Hung, D. Jia, and F. Jiang. Serpentine Spring corner designs for micro-electro-mechanical systems optical switches with large mirror mass. Optical Review, 12(4):339–344, 2005. doi: 10.1007/s10043-005-0339-9.
[22] A. Khlifi, A. Ahmed, S. Pandit, B. Mezghani, R. Patkar, P. Dixit, and M.S. Baghini. Experimental and theoretical dynamic investigation of MEMS Polymer mass-spring systems. IEEE Sensors Journal, 20(19):11191–11203, 2020. doi: 10.1109/JSEN.2020.2996802.
[23] J. Wu, T. Liu, K. Wang, and K. Sørby. A measuring method for micro force based on MEMS planar torsional spring. Measurement Science and Technology, 32(3):035002, 2020. doi: 10.1088/1361-6501/ab9acd.
[24] Z. Rahimi, J. Yazdani, H. Hatami, W. Sumelka, D. Baleanu, and S. Najafi. Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(3): 529–537, 2020. doi: 10.24425/bpasts.2020.133381.
[25] K.G. Sravani, D. Prathyusha, C. Gopichand, S.M. Maturi, A. Elsinawi, K. Guha, and K. S. Rao. Design, simulation and analysis of RF MEMS capacitive shunt switches with high isolation and low pull-in-voltage. Microsystem Technologies, 28:913–928, 2022. doi: 10.1007/s00542-020-05021-2.
[26] N. Lobontiu and E. Garcia. Mechanics of Microelectromechanical Systems. Kluwer Academic Publishers, 2005. doi: 10.1007/b100026.
[27] H.A. Rouabah, C.O. Gollasch, and M. Kraft. Design optimisation of an electrostatic MEMS actuator with low spring constant for an “Atom Chip”. In Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 3, pages 489–492, 2002.
[28] R. Raymond and J. Raymond. Roark's Formulas for Stress and Strain. McGraw-Hill, 1989.
[29] M.S. Weinberg and A. Kourepenis. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. Journal of Microelectromechanical Systems, 15(3):479–491, 2006. doi: 10.1109/jmems.2006.876779.
Go to article

Authors and Affiliations

Duong Van Nguyen
1 2
ORCID: ORCID
Chien Quoc Nguyen
1
ORCID: ORCID
Hieu Van Dang
2
ORCID: ORCID
Hoang Manh Chu
1
ORCID: ORCID

  1. International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam
  2. FPT University, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Although gear teeth give lots of advantages, there is a high possibility of failure in gear teeth in each gear stage in the drive train system. In this research, the authors developed proper gear teeth using the basic theorem of gear failure and reliability-based design optimization. A design variable characterized by a probability distribution was applied to the static stress analysis model and the dynamics analysis model to determine an objective function and constraint equations and to solve the reliability-based design optimization. For the optimization, the authors simulated the torsional drive train system which includes rotational coordinates. First, the authors established a static stress analysis model which gives information about endurance limit and bending strength. By expressing gear mesh stiffness in terms of the Fourier series, the equations of motion including the gear mesh models and kinematical relations in the drive train system were acquired in the form of the Lagrange equations and constraint equations. For the numerical analysis, the Newmark Beta method was used to get dynamic responses including gear mesh contact forces. From the results such as the gear mesh contact force, the authors calculated the probability of failure, arranged each probability and gear teeth, and proposed a reasonable and economic design of gear teeth.
Go to article

Bibliography

[1] S. Wang, T. Moan, and Z. Jiang. Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain. Renewable Energy, 181:870–897, 2022. doi: 10.1016/j.renene.2021.09.090.
[2] Z. Yu, C. Zhu, J. Tan, C. Song, and Y. Wang. Fully-coupled and decoupled analysis comparisons of dynamic characteristics of floating offshore wind turbine drivetrain. Ocean Engineering, 247:110639, 2022. doi: 10.1016/j.oceaneng.2022.110639.
[3] F.K. Moghadam and A.R. Nejad. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mechanical Systems and Signal Processing, 162:108087, 2022. doi: 10.1016/j.ymssp.2021.108087.
[4] W. Shi, C.W. Kim, C.W. Chung, and H.C. Park. Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model. International Journal of Precision Engineering and Manufacturing, 14(1):153–159, 2013. doi: 10.1007/s12541-013-0021-2.
[5] M. Todorov and G. Vukov. Parametric torsional vibrations of a drive train in horizontal axis wind turbine. In Proceeding of the 1st Conference Franco-Syrian about Renewable Energy, pages 1–17, Damas, 24-28 October, 2010.
[6] R.C. Juvinall and K.M. Marshek. Fundamentals of Machine Component Design. John Wiley & Sons, 2020.
[7] Q. Zhang, J. Kang, W. Dong, and S. Lyu. A study on tooth modification and radiation noise of a manual transaxle. International Journal of Precision Engineering and Manufacturing, 13(6):1013–1020, 2012. doi: 10.1007/s12541-012-0132-1.
[8] B. Shlecht, T. Shulze, and T. Rosenlocher. Simulation of heavy drive trains with multimegawatt transmission power in SimPACK. In: SIMPACK Users Meeting, Baden-Baden, Germany, 21-22 March, 2006.
[9] M. Todorov and G. Vukov. Modal properties of drive train in horizontal axis wind turbine. The Romanian Review Precision Mechanics, Optics & Mechatronics, 40:267–275, 2011.
[10] D. Lee, D.H. Hodges, and M.J. Patil. Multi‐flexible‐body dynamic analysis of horizontal axis wind turbines. Wind Energy, 5(4):281–300, 2002. doi: 10.1002/we.66.
[11] F.L.J. Linden, P.H. Vazques, and S. Silva. Modelling and simulating the efficiency and elasticity of gearboxes, In Proceeding of the 7th Modelica Conference, pages 270–277, Como, 20-22 September, 2009.
[12] J. Wang, D. Qin, and Y. Ding. Dynamic behavior of wind turbine by a mixed flexible-rigid multi-body model. Journal of System Design and Dynamics, 3(3):403–419, 2009. doi: 10.1299/jsdd.3.403.
[13] A.A. Shabana. Computational Dynamics. John Wiley & Sons. 2009.
[14] A.K. Chopra. Dynamics of Structures. Pearson Education India. 2007.
[15] Y. Park, H. Park, Z. Ma, J. You, J. and W. Shi. Multibody dynamic analysis of a wind turbine drivetrain in consideration of the shaft bending effect and a variable gear mesh including eccentricity and nacelle movement. Frontiers in Energy Research, 8:604414, 2021. doi: 10.3389/fenrg.2020.604414.
[16] S.R. Singiresu. Mechanical Vibrations. Addison Wesley. 1995.
[17] R.R. Craig Jr and A.J. Kurdila. Fundamentals of Structural Dynamics. John Wiley & Sons. 2006.
[18] K.J. Bathe. Finite Element Procedures. Klaus-Jurgen Bathe. 2006.
[19] Y. Kim, C.W. Kim, S. Lee, and H. Park. Dynamic modeling and numerical analysis of a cold rolling mill. International Journal of Precision Engineering and Manufacturing, 14(3):407–413. 2013. doi: 10.1007/s12541-013-0056-4.
[20] S.J. Yoon and D.H. Choi. Reliability-based design optimization of slider air bearings. KSME International Journal, 18(10):1722–1729, 2004. doi: 10.1007/BF02984320.
[21] H.H. Chun,S.J. Kwon, T. and Tak. Reliability-based design optimization of automotive suspension systems. International Journal of Automotive Technology, 8(6):713–722, 2007.
[22] J. Fang, Y. Gao, G. Sun, and Q. Li. Multiobjective reliability-based optimization for design of a vehicledoor. Finite Elements in Analysis and Design, 67:13–21, 2013. doi: 10.1016/j.finel.2012.11.007.
[23] Y.L. Young, J.W. Baker, and M.R. Motley. Reliability-based design and optimization of adaptive marine structures. Composite Structures, 92(2):244–253, 2010. doi: 10.1016/j.compstruct.2009.07.024.
[24] G. Liu, H. Liu, C. Zhu, T. Mao, and G. Hu. Design optimization of a wind turbine gear transmission based on fatigue reliability sensitivity. Frontiers of Mechanical Engineering, 16(1):61–79, 2021. doi: 10.1007/s11465-020-0611-5.
[25] H. Li, H. Cho, H. Sugiyama, K.K. Choi, and N.J. Gaul. Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty. Structural and Multidisciplinary Optimization, 56 (1):183–201, 2017. doi: 10.1007/s00158-017-1693-5.
[26] C. Luo, B. Keshtegar, S.P. Zhu, O. Taylan, O. and X.P. Niu. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis. Computer Methods in Applied Mechanics and Engineering, 388:114218. doi: 10.1016/j.cma.2021.114218.
Go to article

Authors and Affiliations

Changwoo Lee
1
Yonghui Park
2
ORCID: ORCID

  1. Pohang Institute of Metal Industry Advancement, Pohang, Republic of Korea
  2. Department of Mechanical Engineering, Yuhan University, Bucheon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The axial crumpling of frusta in the axisymmetric "concertina" mode is examined. A new theoretical model is developed in which the inward folding in both cylinders and frusta is addressed. The results were compared with previous relevant models as well as experimental findings. The flexibility of the model was substantiated by its capability of describing and estimating the inward folding in frusta in general as well as in cylinders as a special case. A declining trend of the eccentricity dependence with the D/t ratio was found in contrast with a previous theory which suggests total independency. ABAQUS 14-2 finite element software was employed to simulate the thin tube as a 3-D thin shell part. Numerical simulations of the process were found to, firstly, underestimate the theoretical values of inward folding in general, secondly anticipate more underestimations as the tubes become thinner and/or have larger apex angle, and finally anticipate as low as 300 apical angle frusta to revert its mode of deformation to global inversion.
Go to article

Bibliography

[1] F.C. Bardi and S. Kyriakides. Plastic buckling of circular tubes under axial compression–part I: Experiments. International Journal of Mechanical Sciences, 48(8):830–841, 2006. doi: 10.1016/j.ijmecsci.2006.03.005.
[2] J.M. Alexander. An approximate analysis of the collapse of thin cylindrical shells under axial loading. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1):10–15, 1960. doi: 10.1093/qjmam/13.1.10.
[3] A.A.K. Mohammed, M.N. Alam, and R. Ansari. Quasi-static study of thin aluminium frusta with linearly varying wall-thickness. International Journal of Crashworthiness, 25(5):473–484, 2020. doi: 10.1080/13588265.2019.1613762.
[4] A. Shiravand and M. Asgari. Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Structures, 145:106442, 2019. doi: 10.1016/j.tws.2019.106442.
[5] P. Sadjad, E.M. Hossein, and E.M. Sobhan. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads. Journal of Central South University, 25:632–645, 2018. doi: 10.1007/s11771-018-3766-z.
[6] G. Lu , J.L. Yu , J.J. Zhang, and T.X. Yu. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube. International Journal of Mechanical Sciences, 206:106610, 2021. doi: 10.1016/j.ijmecsci.2021.106610.
[7] A. Sadighi, A. Eyvazian, M. Asgari, and A.M. Hamouda. A novel axially half corrugated thin-walled tube for energy absorption under axial loading. Thin-Walled Structures, 145:106418, 2019. doi: 10.1016/j.tws.2019.106418.
[8] M.Y. Abbood, and R.N. Kiter. On the peak quasi-static load of axisymmetric buckling of circular tubes. International Journal of Crashworthiness, 27(2):367–375, 2022. doi: 10.1080/13588265.2020.1807679.
[9] T. Wierzbicki, S.U. Bhat, W. Abramowicz, and D. Brodkin. Alexander revisited–-A two folding elements model of progressive crushing of tubes. International Journal of Solids and Structures, 29(4):3269–3288, 1992. doi: 10.1016/0020-7683(92)90040-Z.
[10] A.A. Singace, H. Elsobky, and T.Y. Reddy. On the eccentricity factor in the progressive crushing of tubes. International Journal of Solids and Structures, 32(24):3589-3602, 1995. doi: 10.1016/0020-7683(95)00020-B.
[11] H.E. Postlethwaite and B. Mills. Use of collapsible structural elements as impact isolators, with special reference to automotive applications. The Journal of Strain Analysis for Engineering Design, 5(1):58–73,1970. doi: 10.1243/03093247V051058.
[12] A.G. Mamalis, D.E. Manolakos, S. Saigal, G. Viegelahn, and W. Johnson. Extensible plastic collapse of thin-wall frusta as energy absorbers. International Journal of Mechanical Sciences, 28(4):219–229, 1986. doi: 10.1016/0020-7403(86)90070-6.
[13] A.G. Mamalis, D.E. Manolakos, G.L. Viegelahn, and W. Johnson. The modeling of the progressive extensible plastic collapse of thin-wall shells. International Journal of Mechanical Sciences, 30(3-4):249–261, 1988. doi: 10.1016/0020-7403(88)90058-6.
[14] N.K. Gupta, G.L. Prasad, and S.K. Gupta. Plastic collapse of metallic conical frusta of large semi-apical angles. International Journal of Crashworthiness, 2(4):349–366, 1997. doi: 10.1533/cras.1997.0054.
[15] A.A.A. Alghamdi, A.A.N. Aljawi, and T.M.N. Abu-Mansour. Modes of axial collapse of unconstrained capped frusta. International Journal of Mechanical Sciences, 44(6):1145–1161, 2002. doi: 10.1016/S0020-7403(02)00018-8.
[16] N.M. Sheriff, N.K. Gupta, R. Velmurugan, and N. Shanmugapriyan. Optimization of thin conical frusta for impact energy absorption. Thin-Walled Structures, 46(6):653–666, 2008. doi: 10.1016/j.tws.2007.12.001.
Go to article

Authors and Affiliations

Riyah N. Kiter
1
Mazin Y. Abbood
1
ORCID: ORCID
Omar H. Hassoon
2
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering, University of Anbar, Iraq
  2. Department of Production and Metallurgy Engineering, University of Technology, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

In this present work, the laminar free convection boundary layer flow of a two-dimensional fluid over the vertical flat plate with a uniform surface temperature has been numerically investigated in detail by the similarity solution method. The velocity and temperature profiles were considered similar to all values and their variations are as a function of distance from the leading edge measured along with the plate. By taking into account this thermal boundary condition, the system of governing partial differential equations is reduced to a system of non-linear ordinary differential equations. The latter was solved numerically using the Runge-Kutta method of the fourth-order, the solution of which was obtained by using the FORTRAN code on a computer. The numerical analysis resulting from this simulation allows us to derive some prescribed values of various material parameters involved in the problem to which several important results were discussed in depth such as velocity, temperature, and rate of heat transfer. The definitive comparison between the two numerical models showed us an excellent agreement concerning the order of precision of the simulation. Finally, we compared our numerical results with a certain model already treated, which is in the specialized literature.
Go to article

Bibliography

[1] Md J. Uddin, W.A. Khan, and A.I.Md Ismail. Similarity solution of double diffusive free convective flow over a moving vertical flat plate with convective boundary condition. Ain Shams Engineering Journal, 6(3):1105–1112, 2015. doi: 10.1016/j.asej.2015.01.008.
[2] J.A. Esfahani and B. Bagherian. Similarity solution for unsteady free convection from a vertical plate at constant temperature to power law fluids. Journal of Heat Transfer, 134(10):1–7, 2012. doi: 10.1115/1.4005750.
[3] Y.Z. Boutros, M.B. Abd-el-Malek, and N.A. Badran. Group theoretic approach for solving time-independent free-convective boundary layer flow on a nonisothermal vertical flat plate. Archiwum Mechaniki Stosowanej, 42(3):377–395, 1990.
[4] M. Modather, A.M. Rashad, and A.J. Chamkha. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turkish Journal of Engineering and Environmental Sciences, 33(4):245–257, 2009.
[5] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. International Communications in Heat and Mass Transfer, 113:104494, 2020. doi: 10.1016/j.icheatmasstransfer.2020.104494.
[6] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15:102652, 2019. doi: 10.1016/j.rinp.2019.102652.
[7] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Engineering Journal, 59(2):565–577, 2020. doi: 10.1016/j.aej.2020.01.043.
[8] A.J. Chamkha. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A: Applications, 32(6):653–675, 1997. doi: 10.1080/10407789708913911.
[9] A.J. Chamkha. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. International Journal of Engineering Science, 38(15):1699–1712, 2000. doi: 10.1016/S0020-7225(99)00134-2.
[10] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22(18):18, 2020. doi: 10.3390/e22010018.
[11] A.J. Chamkha, C. Issa, and K. Khanafer. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1):73–81, 2002. doi: 10.1016/S1290-0729(01)01305-9.
[12] A.J. Chamkha and A. Ben-Nakhi. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's effects. Heat and Mass Transfer, 44:845, 2008. doi: 10.1007/s00231-007-0296-x.
[13] A.J. Chamkha. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. International Journal of Engineering Science, 35(10/11):975–986, 1997. doi: 10.1016/S0020-7225(96)00122-X.
[14] A. Wakif, A.J. Chamkha, I.L. Animasaun, M. Zaydan, H. Waqas, and R. Sehaqui. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal Riga plate in the coexistence of wall suction and Joule heating effects: A comprehensive numerical investigation. Arabian Journal for Science and Engineering, 45:9423–9438, 2020. doi: 10.1007/s13369-020-04757-3.
[15] N.A. Ahammad, I.A. Badruddin, S.Z. Kamangar, H.M.T. Khaleed, C.A. Saleel, and T.M.I. Mahlia. Heat Transfer and entropy in a vertical porous plate subjected to suction velocity and MHD. Entropy, 23(8):1069, 2021. doi: 10.3390/e23081069.
[16] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Engineering Journal, 12(2): 2099–2109, 2021. doi: 10.1016/j.asej.2020.10.013.
[17] P. Kandaswamy, A.K.A. Hakeem, and S.Saravanan. Internal natural convection driven by an orthogonal pair of differentially heated plates. Computers & Fluids, 111:179–186, 2015. doi: 10.1016/j.compfluid.2015.01.015.
[18] S.E. Ahmed, H.F. Oztop, and K. Al-Salem. Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater. Computers & Fluids, 102:74–84, 2014. doi: 10.1016/j.compfluid.2014.06.024.
[19] S. Siddiqa, M.A. Hossain, and R.S.R. Gorla. Natural convection flow of viscous fluid over triangular wavy horizontal surface. Computers & Fluids, 106:130–134, 2015. doi: 10.1016/j.compfluid.2014.10.001.
[20] L. Zhou, S.W. Armfield, N. Williamson, M.P. Kirkpatrick, and W. Lin. Natural convection in a cavity with time-dependent flux boundary. International Journal of Heat and Fluid Flow, 92:108887, 2021. doi: 10.1016/j.ijheatfluidflow.2021.108887.
[21] K.M. Talluru, H.F. Pan, J.C. Patterson, and K.A. Chauhan. Convection velocity of temperature fluctuations in a natural convection boundary layer. International Journal of Heat and Fluid Flow, 84:108590, 2020. doi: 10.1016/j.ijheatfluidflow.2020.108590.
[22] M. Chakkingal, S. Kenjereš, I. Ataei-Dadavi, M.J. Tummers, and C.R. Kleijn. Numerical analysis of natural convection with conjugate heat transfer in coarse-grained porous media. International Journal of Heat and Fluid Flow, 77:48–60, 2019. doi: 10.1016/j.ijheatfluidflow.2019.03.008.
[23] N. Mahir and Z. Altaç. Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75:103–121, 2019. doi: 10.1016/j.ijheatfluidflow.2018.11.013.
[24] M.A. Ezan and M. Kalfa. Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity. International Journal of Heat and Fluid Flow, 61(Part B):438–448, 2016. doi: 10.1016/j.ijheatfluidflow.2016.06.004.
[25] A. Ouahouah, N. Labsi, X. Chesneau, and Y.K. Benkahla. Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics, 289:104490, 2021. doi: 10.1016/j.jnnfm.2021.104490.
[26] M.H. Matin, I. Pop, and S. Khanchezar. Natural convection of power-law fluid between two-square eccentric duct annuli Journal of Non-Newtonian Fluid Mechanics, 197:11–23, 2013. doi: 10.1016/j.jnnfm.2013.02.002.
[27] M.T. Nguyen, A.M. Aly, and S.W. Lee. A numerical study on unsteady natural/ mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(3):684–703, 2018. doi: 10.1108/HFF-02-2017-0058.
[28] Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani, and M. Bouzidi. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 20(1):130–148, 2010. doi: 10.1108/09615531011008163.
[29] N.B. Balam and A. Gupta. A fourth-order accurate finite difference method to evaluate the true transient behaviour of natural convection flow in enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 30(3):1233–1290, 2020. doi: 10.1108/HFF-06-2019-0519.
[30] L. Lukose and T. Basak. Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection. International Journal of Numerical Methods for Heat & Fluid Flow, 30(7):3535–3583, 2020. doi: 10.1108/HFF-05-2019-0376.
[31] P. Pichandi, and S. Anbalagan. Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism. International Journal of Numerical Methods for Heat & Fluid Flow, 28(9):2158–2188, 2018. doi: 10.1108/HFF-12-2017-0522.
[32] M. Salari, M.M. Rashidi,. E.H. Malekshah, and M.H. Malekshah. Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 27(12):2902–2923, 2017. doi: 10.1108/HFF-03-2017-0097.
[33] A. Salama, M. El Amin, and S. Sun. Numerical investigation of natural convection in two enclosures separated by anisotropic solid wall. International Journal of Numerical Methods for Heat & Fluid Flow, 24(8):1928–1953, 2014. doi: 10.1108/HFF-09-2013-0268.
[34] N. Kim and J.N. Reddy. Least-squares finite element analysis of three-dimensional natural convection of generalized Newtonian fluids. International Journal for Numerical Methods in Fluids, 93(4):1292–1307, 2021. doi: 10.1002/fld.4929.
[35] J. Zhang and F. Lin. An efficient Legendre-Galerkin spectral method for the natural convection in two-dimensional cavities. International Journal for Numerical Methods in Fluids, 90(12):651–659, 2019.doi: 10.1002/fld.4742.
[36] J.C.F. Wong and P. Yuan. A FE-based algorithm for the inverse natural convection problem. International Journal for Numerical Methods in Fluids, 68(1):48–82, 2012. doi: 10.1002/fld.2494.
[37] H.S. Panda and S.G. Moulic. An analytical solution for natural convective gas micro flow in a tall vertical enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1):145–154, 2011. doi: 10.1243/09544062JMES1768.
[38] M. Saleem, S. Asghar, and M.A. Hossain. Natural convection flow in an open rectangular cavity with cold sidewalls and constant volumetric heat source. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(5):1191–1201, 2011. doi: 10.1177/09544062JMES2648.
[39] A. Koca, H.F. Oztop, and Y. Varol. Natural convection analysis for both protruding and flush-mounted heaters located in triangular enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7):1203–1214, 2008. doi: 10.1243/09544062JMES886.
[40] M.K. Mansour. Effect of natural convection on conjugate heat transfer characteristics in liquid mini channel during phase change material melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3):491–513, 2014. doi: 10.1177/0954406213486590.
[41] E.F. Kent. Numerical analysis of laminar natural convection in isosceles triangular enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(5):1157–1169, 2009. doi: 10.1243/09544062JMES1122.
[42] A. Belhocine and W.Z. Wan Omar. An analytical method for solving exact solutions of the convective heat transfer in fully developed laminar flow through a circular tube. Heat Transfer Asian Research, 46(8):1342–1353, 2017. doi: 10.1002/htj.21277.
[43] A. Belhocine and W. Z. Wan Omar. Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature. Case Studies in Thermal Engineering, 6:116–127, 2015. doi: 10.1016/j.csite.2015.08.003.
[44] A. Belhocine and O.I. Abdullah. Numerical simulation of thermally developing turbulent flow through a cylindrical tube. International Journal of Advanced Manufacturing Technology, 102(5-8):2001–2012, 2019. doi: 10.1007/s00170-019-03315-y.
[45] A. Belhocine and W.Z. Wan Omar. Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer. Mathematics and Computers in Simulation, 180:43–60, 2021. doi: 10.1016/j.matcom.2020.08.007.
[46] A. Belhocine, N.Stojanovic, and O.I. Abdullah. Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. European Journal of Computational Mechanics, 30(4-6):337–386, 2021.doi: 10.13052/ejcm2642-2085.30463.
[47] S. Ostrach. An analysis of laminar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. National Advisory Committee for Aeronautics, Report 1111, 1953.
[48] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt. Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, New York, 2011.
Go to article

Authors and Affiliations

Ali Belhocine
1
ORCID: ORCID
Nadica Stojanovic
2
Oday Ibraheem Abdullah
3

  1. Department of Mechanical Engineering, University of Sciences and the Technology of Oran, Algeria
  2. University of Kragujevac, Faculty of Engineering, Department for Motor Vehicles and Motors, Serbia
  3. System Technologies and Mechanical Design Methodology, Hamburg University of Technology, Hamburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to design the links‒spring mechanism for balancing, in the three positions of the operating range, a rotary disc subjected to a torque. An energy-related approach towards the conditions of the mechanical system balance for a discrete number of positions leads to the formulation of a task of searching for a four-bar linkage which guides a coupler point through the prescribed positions, where, at the same time, geometrical conditions (specifying the spring tension) and kinematic conditions (defining the radial component of the tension change rate) are satisfied. The finitely and infinitesimally separated position synthesis is considered, however, only a component of the coupler point velocity is essential. A general method was proposed for determining the four-bar mechanism geometry. Mechanism inversion was applied in order to reduce the number of designed variables and simplify the solution method. The system of complex algebraic equations defines the problem. Linear, symbolic transformations and a systematic search technique are utilized to find multiple local optimal solutions. The problem is solved using Mathematica software.
Go to article

Bibliography

[1] V.H. Arakelian and S. Briot. Balancing of Linkages and Robot Manipulators. Advanced Methods with Illustrative Examples. Springer, 2015.
[2] P. Wang and Q. Xu. Design and modeling of constant-force mechanisms: A survey. Mechanism and Machine Theory, 119:1–21, 2018. doi: 10.1016/j.mechmachtheory.2017.08.017.
[3] V. Arakelian and M. Mkrtchyan. Design of scotch yoke mechanisms with balanced input torque. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences \amp Computers and Information in Engineering Conference IDETC/CIE 2015, pages 1–5, Boston, Massachusetts, USA, 2–5 August, 2015. doi: 10.1115/DETC2015-46709.
[4] J.A. Franco, J.A. Gallego, and J.L. Herder. Static balancing of four-bar compliant mechanisms with torsion springs by exerting negative stiffness using linear spring at the instant center of rotation. Journal of Mechanisms and Robotics, 13(3):031010–13, 2021. doi: 10.1115/1.4050313.
[5] B. Demeulenaere and J. De Schutter. Input torque balancing using an inverted cam mechanism. Journal of Mechanical Design, 127(5):887–900, 2005. doi: 10.1115/1.1876452.
[6] D.A. Streit and E. Shin. Equilibrators for planar linkages. Journal of Mechanical Design, 115(3):604–611, 1993. doi: 10.1115/1.2919233.
[7] Y. Liu, D.P. Yu, and J. Yao. Design of an adjustable cam based constant force mechanism. Mechanism and Machine Theory, 103:85–97, 2016. doi: 10.1016/j.mechmachtheory.2016.04.014.
[8] J.L. Herder. Design of spring force compensation systems. Mechanism and Machine Theory, 33(1-2):151–161, 1998. doi: 10.1016/S0094-114X(97)00027-X.
[9] S.R. Deepak and G.K. Ananthasuresh. Static balancing of a four-bar linkage and its cognates. Mechanism and Machine Theory, 4:62–80, 2012. doi: 10.1016/j.mechmachtheory.2011.09.009.
[10] S. Perreault, P. Cardou, and C. Gosselin. Approximate static balancing of a planar parallel cable-driven mechanism based on four-bar linkages and springs. Mechanism and Machine Theory, 79:64–79, 2014. doi: 10.1016/j.mechmachtheory.2014.04.008.
[11] J. Buśkiewicz. The optimum distance function method and its application to the synthesis of a gravity balanced hoist. Mechanism and Machine Theory, 139:443–459, 2019. doi: 10.1016/j.mechmachtheory.2019.05.006.
[12] V.L. Nguyen. A design approach for gravity compensators using planar four-bar mechanisms and a linear spring. Mechanism and Machine Theory, 172:104770, 2022. doi: 10.1016/j.mechmachtheory.2022.104770.
[13] R. Barents, M. Schenk, W.D. van Dorsser, B.M. Wisse, and J.L. Herder. Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators. Journal of Mechanical Design, 133(6):689–700, 2011. doi: 10.1115/DETC2009-86770.
[14] I. Simionescu and L. Ciupitu. The static balancing of the industrial robot arms, Part I: discrete balancing. Mechanism and Machine Theory, 35(9):1287–1298, 2001. doi: 10.1016/S0094-114X(99)00067-1.
[15] A.G. Erdman and G.N. Sandor. Mechanism Design: Analysis and Synthesis, Vol. 1, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 2001.
[16] G.N. Sandor and A.G. Erdman. Advanced Mechanism Design: Analysis and Synthesis, Vol. 2, Prentice Hall, Englewood Cliffs, NJ, 1997.
[17] J.M. McCarthy and G.S. Soh. Geometric Design of Linkages, Vol. 11, Springer, New York, 2011.
[18] H. Kaustubh, J. Sonawale, and J.M. McCarthy. A design system for six-bar linkages integrated with a solid modeler. Journal of Computing and Information Science in Engineering, 15(4):041002, 2015. doi: 10.1115/1.4030940.
[19] J. Han and W. Liu. On the solution of eight-precision-point path synthesis of planar four-bar mechanisms based on the solution region methodology. Journal of Mechanisms and Robotics, 11(6):064504, 2019. doi: 10.1115/1.4044544.
[20] C.W. Wampler, A.P. Morgan, and A.J. Sommese. Complete solution of the nine-point path synthesis problem for four-bar linkages. Journal of Mechanical Design, 114(1):153–159, 1992. doi: 10.1115/1.2916909.
[21] W. Guo and X. Wang. Planar linkage mechanism design for bi-objective of trajectory and velocity. J Beijing Univ Aero Astronautics, 35(12):1483–1486, 2009.
[22] J. Han, W. Qian, and H. Zhao. Study on synthesis method of $\lambda$-formed 4-bar linkages approximating a straight line. Mechanism and Machine Theory, 44(1):57–65, 2009. doi: 10.1016/j.mechmachtheory.2008.02.011.
[23] J.E. Holte, T.R. Chase, and A.G. Erdman. Approximate velocities in mixed exact-approximate position synthesis of planar mechanisms. Journal of Mechanical Design, 123(3):388–394, 2001. doi: 10.1115/1.1370978.
[24] W.T. Lee and K. Russell. Developments in quantitative dimensional synthesis (1970–present): Four-bar path and function generation. Inverse Problems in Science and Engineering, 26(9):1280–1304, 2017. doi: 10.1080/17415977.2017.1396328.
[25] C. Wampler and A. Sommese, Numerical algebraic geometry and algebraic kinematics. Acta Numerica, 20:469–567, 2011. doi: 10.1017/S0962492911000067.
[26] D.A. Brake, J.D. Hauenstein, A.P. Murray, D.H. Myszka, and C.W. Wampler. The complete solution of alt-burmester synthesis problems for four-bar linkages. Journal of Mechanisms and Robotics, 8(4): 041018, 2016. doi: 10.1115/1.4033251.
[27] J. Buśkiewicz, 2019, Gravity balancing of a hoist by means of a four-bar linkage and spring. In: Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, pages 1721–1730, Cracow, Poland, June, 2019. doi: 10.1007/978-3-030-20131-9_170.
[28] J. Buśkiewicz. Solution data, the code of algorithm 6dv2s_II in Mathematica wolfram 8.0 and pdf file of the code, the figures of the spring extensions and the rates of the spring extensions for all the cases. Mendeley Data, V3, 2022, https://data.mendeley.com/datasets/sb38dsw6vm/3.
Go to article

Authors and Affiliations

Jacek Buśkiewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis of the thermal-flow characteristics for a laminar flow inside a rectangular microchannel. The flow of water through channels with thin obstacles mounted on opposite walls was analyzed. The studies were conducted with a low Reynolds number (from 20 to 200). Different heights of rectangular obstacles were analyzed to see if geometrical factors influence fluid flow and heat exchange in the microchannel. Despite of the fact that the use of thin obstacles in the microchannels leads to an increase in the pressure drop, the increase in the height of the obstacles favors a significant intensification of heat exchange with the maximum thermal gain factor of 1.9 for the obstacle height coefficient h/H=0.5, which could be acceptable for practical application.
Go to article

Bibliography

[1] Y.-T. Yang and S. Yang. Numerical study of turbulent flow in two-dimensional channel with surface mounted obstacle. International Journal of Heat and Mass Transfer, 37(18):2985–2991, 1994. doi: 10.1016/0017-9310(94)90352-2.
[2] K. Sivakumar, T. Sampath Kumar, S. Sivasankar, V. Ranjithkumar, and A. Ponshanmugakumar. Effect of rib arrangements on the flow pattern and heat transfer in internally ribbed rectangular divergent channels. Materials Today: Proceedings, 46(9):3379–3385, 2021. doi: 10.1016/j.matpr.2020.11.548.
[3] T.M. Liou, S.W. Chang, and S.P. Chan. Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. International Journal of Heat and Mass Transfer, 116:152–165, 2018. doi: 10.1016/j.ijheatmasstransfer.2017.08.094.
[4] W. Yang, S. Xue, Y. He, and W. Li. Experimental study on the heat transfer characteristics of high blockage ribs channel. Experimental Thermal and Fluid Science, 83:248–259, 2017. doi: 10.1016/j.expthermflusci.2017.01.016.
[5] F.B. Teixeira, M.V. Altnetter, G. Lorenzini, B.D. do A. Rodriguez, L.A.O. Rocha, L.A. Isoldi, and E.D. dos Santos. Geometrical evaluation of a channel with alternated mounted blocks under mixed convection laminar flows using constructal design. Journal of Engineering Thermophysics, 29(1): 92–113, 2020. doi: 10.1134/S1810232820010087.
[6] A. Korichi and L. Oufer. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. International Journal of Thermal Sciences, 44(7):644–655, 2005. doi: 10.1016/j.ijthermalsci.2004.12.003.
[7] L.C. Demartini, H.A. Vielmo, and S.V. Möller. Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2):153–159, 2004. doi: 0.1590/S1678-58782004000200006.
[8] Y.T. Yang and C.Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46(5):771–780, 2003. doi: 0.1016/S0017-9310(02)00360-5.
[9] G. Wang, T. Chen, M. Tian, and G. Ding. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. International Journal of Heat and Mass Transfer, 148:119142, 2020. doi: 10.1016/j.ijheatmasstransfer.2019.119142.
[10] S. Mahjoob and S. Kashkuli. Thermal transport analysis of injected flow through combined rib and metal foam in converging channels with application in electronics hotspot removal. International Journal of Heat and Mass Transfer, 177:121223, 2021. doi: 10.1016/j.ijheatmasstransfer.2021.121223.
[11] L. Chai, G.D. Xia, and H.S. Wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, 92:32–41, 2016. doi: 10.1016/j.applthermaleng.2015.09.071.
[12] Y. Yin, R. Guo, C. Zhu, T. Fu, and Y. Ma. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 236:116306, 2020. doi: 10.1016/j.seppur.2019.116306.
[13] A. Behnampour O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, M. Zarringhalam, and R. Mashayekhi. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91:15–31, 2017. doi: 10.1016/j.physe.2017.04.006.
[14] M.R. Gholami, O.A. Akbari, A. Marzban, D. Toghraie, G.A.S. Shabani, and M. Zarringhalam. The effect of rib shape on the behavior of laminar flow of {oil/MWCNT} nanofluid in a rectangular microchannel. Journal of Thermal Analysis and Calorimetry, 134(3):1611–1628, 2018. doi: 10.1007/s10973-017-6902-3.
[15] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-{Al2O3} nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290:135–153, 2016. doi: 10.1016/j.amc.2016.05.053.
[16] B. Mondal, S. Pati, and P.K. Patowari. Analysis of mixing performances in microchannel with obstacles of different aspect ratios. Journal of Process Mechanical Engineering, 233(5):1045–1051, 2019. doi: 10.1177/0954408919826748.
[17] L. Chai, G.D. Xia, and H.S. Wang. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls -- Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 97:1081–1090, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.076.
[18] P. Pontes, I. Gonçalves, M. Andredaki, A. Georgoulas, A.L.N. Moreira, and A.S. Moita. Fluid flow and heat transfer in microchannel devices for cooling applications: Experimental and numerical approaches. Applied Thermal Engineering, 218:119358, 2023. doi: 10.1016/j.applthermaleng.2022.119358.
[19] B.K. Srihari, A. Kapoor, S. Krishnan, and S. Balasubramanian. Computational fluid dynamics studies on the flow of fluids through microchannel with intentional obstacles. AIP Conference Proceedings, 2516(1):170003. doi: 10.1063/5.0108550.
[20] T. Grzebyk and A. Górecka-Drzazga. Vacuum microdevices. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1):19–23, 2012. doi: 10.2478/v10175-012-0004-y.
[21] M. Kmiotek and A. Kucaba-Piętal. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2):111–118, 2018. doi: 10.24425/119064.
[22] S. Baheri Islami, B. Dastvareh, and R. Gharraei. An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers. International Journal of Heat and Mass Transfer, 78:917–929, 2014. doi: 10.1016/j.ijheatmasstransfer.2014.07.022.
[23] S. Baheri Islami, B. Dastvareh, and R. Gharraei. Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer. International Communications in Heat and Mass Transfer, 43:146–154, 2013. doi: 10.1016/j.icheatmasstransfer.2013.01.002.
[24] C.K. Chung, C.Y. Wu, and T.R. Shih. Effect of baffle height and reynolds number on fluid mixing, Microsystem Technologies, 14(9-11):1317–1323, 2008, doi: 10.1007/s00542-007-0511-1.
[25] I. Adina R&D, Theory and Modling Guide, Vollume III: ADINA CFD&FSI, Report ARD. 2019.
[26] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998.
Go to article

Authors and Affiliations

Małgorzata Kmiotek
1
ORCID: ORCID
Robert Smusz
1
ORCID: ORCID

  1. Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Optimization of cooling systems is of major importance due to the economy of cooling water and energy in thermal installations in the industry. The hydrodynamic study of the film is a prerequisite for the study of the intensity of the heat transfer during the cooling of a horizontal plate by a liquid film. This experimental work made it possible to quantify the hydrodynamic parameters by a new approach, a relation linking the thickness of the film to the velocity was found as a function of the geometrical and hydrodynamic characteristics of the sprayer.
A new statistical approach has been developed for the measurement of the velocity, the liquid fluid arriving at the edge of the plate and having velocity V is spilled out like a projectile. The recovering of the liquid in tubes allowed us to quantify flow rates for different heights positions relative to the plate, statistical processing permitted us to assess the probable velocity with a margin of error.

Go to article

Bibliography

[1] B. Abbasi. Pressure-based predection of spray cooling heat transfer. Ph.D. Thesis, University of Maryland, College Park, USA, 2010.
[2] E.G. Bratuta and L. Zanotchkine. Intensification of heat transfer by dispersed fluids. Machinostraenia Energy, 38(84):71--75, 1984. (in Russian).
[3] M. Tebbal. Correlation of the thermal transfer coefficient and the dispersion of the fluid on a surface at high temperature. In: 5th International Meeting on Heat Transfer, Monastir, Tunisia, 1991.
[4] W. Ambrosini, N. Forgione, F. Oriolo, P. Vigni, and S. Baessler. Experimental investigation on wave velocity in a falling film. In: 2nd International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, Italy, May 23-26, 1999.
[5] W. Ambrosini, N. Forgione, and F. Oriolo. Statistical characteristics of a water film falling down a flat plate at different inclinations and temperatures. International Journal of Multiphase Flow, 28(9):1521-1540, 2002. doi: 10.1016/S0301-9322(02)00039-3.
[6] P. Adomeit and U. Renz. Hydrodynamics of three-dimensional waves in laminar falling films. International Journal of Multiphase Flow, 26(7):1183-1208, 2000. doi: 10.1016/S0301-9322(99)00079-8.
[7] S.V. Alekseenko, V.A. Antipin, A.V. Bobylev, and D.M. Markovich. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder. Experiments in Fluids, 43:197-207, 2007. doi: 10.1007/s00348-007-0322-2.
[8] W. Aouad, J.R. Landel, S.B. Dalziel, J.F. Davidson, and D.I. Wilson. Particle image velocimetry and modelling of horizontal coherent liquid jets impinging on and draining down a vertical wall. Experimental Thermal and Fluid Science, 74:429-443, 2016. doi: 10.1016/j.expthermflusci.2015.12.010.
[9] A.C. Ashwood, S.J. Vanden Hogen, M.A. Rodarte, C.R. Kopplin, D.J. Rodríguez, E.T. Hurlburt, and T.A. Shedd. A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow. International Journal of Multiphase Flow, 68:27-39, 2015. doi: 10.1016/j.ijmultiphaseflow.2014.09.003.
[10] T. Takamasa and T. Hazuku. Measuring interfacial waves on film flowing down a vertical plate wall in the entry region using laser focus displacement meters. International Journal of Heat and Mass Transfer, 43(15):2807-2819, 2000. doi: 10.1016/S0017-9310(99)00335-X.
[11] K. Moran, J. Inumaru, and M. Kawaji. Instantaneous hydrodynamics of a laminar wavy liquid film. International Journal of Multiphase Flow, 28(5):731-755, 2002. doi: 10.1016/S0301-9322(02)00006-X.
[12] M. Tebbal and H. Mzad. An hydrodynamic study of a water jet dispersion beneath liquid sprayers. Forschung im Ingenieurwesen, 68(3):126-132, 2004. doi: 10.1007/s10010-003-0118-3. (in German).
[13] H. Mzad and M. Tebbal. Thermal diagnostics of highly heated surfaces using water-spray cooling. Heat and Mass Transfer, 45(3):287-295, 2009. doi: 10.1007/s00231-008-0431-3.
[14] E.S. Benilov, S.J. Chapman, J.B. McLeod, J.R. Ockendon, and V.S. Zubkov. On liquid films on an inclined plate. Journal of Fluid Mechanics, 663(25):53-69, 2010. doi: 10.1017/S002211201000337X.
[15] X.G. Huang, Y.H. Yang, P. Hu, and K. Bao. Experimental study of water-air countercurrent flow characteristics in large scale rectangular channel. Annals of Nuclear Energy, 69:125-133, 2014. doi: 10.1016/j.anucene.2014.02.005.
[16] Y.Q. Yu and X. Cheng. Experimental study of water film flow on large vertical and inclined flat plate. Progress in Nuclear Energy, 77:176-186, 2014.doi: 10.1016/j.pnucene.2014.07.001.
[17] H. Mzad and M. Elguerri. Simulation of twin overlapping sprays underneath hydraulic atomizers: influence of spray hydrodynamic parameters. Atomization and Sprays, 22(5):447-460, 2012. doi: 10.1615/AtomizSpr.2012006076.
[18] K. Choual, R. Benzeguir, and M. Tebbal. Experimental study of the dispersion beneath liquid sprayers in the intersection area of jets on a horizontal plate. Mechanika, 23(6):835-844, 2017. doi: 10.5755/j01.mech.23.6.17243.
[19] W-F. Du, Y-H. Lu, R-C. Zhao, L. Chang, and H-J. Chang. Film thickness of free falling water flow on a large-scale ellipsoidal surface. Progress in Nuclear Energy, 105:1-7, 2018. doi: 10.1016/j.pnucene.2017.12.007.
[20] C.B. Tibiriçá, F.J. do Nascimento, and G. Ribatski. Film thickness measurement techniques applied to micro-scale two-phase flow systems. Experimental Thermal and Fluid Science, 34(4):463-473, 2010. doi: 10.1016/j.expthermflusci.2009.03.009.
[21] H. Ouldrebai, E.K. Si-Ahmed, M. Hammoudi, J. Legrand, Y. Salhi, and J. Pruvost. A laser multi-reflection technique applied for liquid film flow measurements. Experimental Techniques, 43:213-223, 2019. doi: 10.1007/s40799-018-0279-5.
[22] J. Cai and X. Zhuo. Researches on hydrodynamics of liquid film flow on inclined plate using diffuse-interface method. Heat and Mass Transfer, 56:1889-1899, 2020. doi: 10.1007/s00231-020-02829-6.
[23] E.G Bratuta and M. Tebbal. Influence of the jet on the fluid dispersion. IzvestiaVouzob, Métallurgie, 12:108-111, 1983.
[24] B. Patrick, B. Barber, and D. Brown. Practical aspects of the design, operation and performance of caster spray systems. Revue de Métallurgie, 98(4):383-390, 2001. doi: 10.1051/metal:2001192.
Go to article

Authors and Affiliations

Abdelbaki Elmahi
1
ORCID: ORCID
Touhami Baki
1
ORCID: ORCID
Mohamed Tebbal
1

  1. Faculty of Mechanics, Gaseous Fuels and Environment Laboratory, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, Oran, Algeria.
Download PDF Download RIS Download Bibtex

Abstract

Considering the importance of gear systems as one of the important vibration and noise sources in power transmission systems, an active control for suppressing gear vibration is presented in this paper. A gear bearing model is developed and used to design an active control gear-bearing system. Two possible configurations of control system are designed based on active bearing and active gear-shaft torsional coupling to control and reduce the disturbance affecting system components. The controller for computing the actuation force is designed by using the H-infinity control approach. Simulation results indicate that the desired controller can efficiently be used for vibration control of gear bearing systems.
Go to article

Bibliography

[1] H.N. Özgüven and D.R. Houser. Dynamic analysis of high speed gears by using loaded static transmission error. Journal of Sound and Vibration, 125(1):383–411, 1988. doi: 10.1016/0022-460X(88)90416-6.
[2] T.J. Sutton, S.J. Elliott, M.J. Brennan, K.H. Heron and D.A.C. Jessop. Active isolation of multiple structural waves on a helicopter gearbox support strut. Journal of Sound and Vibration, 205(1):81–101, 1997. doi: 10.1006/jsvi.1997.0972.
[3] G.T. Montague, A.F. Kaskak, A. Palazzolo, D. Manchala, and E. Thomas. Feed-forward control of gear mesh vibration using piezoelectric actuators. Shock and Vibration, 1(5):473–484 1994. doi: 10.3233/SAV-1994-1507.
[4] B. Rebbechi, C. Howard, and C. Hansen. Active control of gearbox vibration. Proceedings of the Active Control of Sound and Vibration Conference, pages 295–304, Fort Lauderdale, Florida, USA, 02-04 December, 1999.
[5] M.H. Chen and M.J. Brennan. Active control of gear vibration using specially configured sensors and actuators. Smart Materials and Structures, 9:342–350, 2000. doi: 10.1088/0964-1726/9/3/315.
[6] M. Li, T.C. Lim, and W.S. Shepard Jr. Modeling active vibration control of a geared rotor system. Smart Materials and Structures, 13:449–458, 2004. doi: 10.1088/0964-1726/13/3/001.
[7] Y.H. Guan, T.C. Lim, and W.S. Shepard Jr. Experimental study on active vibration control of a gearbox system. Journal of Sound and Vibration, 282(3-5):713–733, 2005. doi: 10.1016/j.jsv.2004.03.043.
[8] Y.H. Guan, M. Li, T.C. Lim, and W.S. Shepard Jr. Comparative analysis of actuator concept for active gear pair vibration control. Journal of Sound and Vibration, 269(1-2):273–294, 2004. doi: 10.1016/S0022-460X(03)00072-5.
[9] Y. Li, F. Zhang, Q. Ding, and L. Wang. Method and experiment study for active vibration control of gear meshing. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 27(2):215–221, 2014.
[10] W. Gao, L. Wang, and Y. Liu. A modified adaptive filtering algorithm with online secondary path identification used for suppressing gearbox vibration. Journal of Mechanical Science and Technology, 30(11):4833–4843, 2016. doi: 10.1007/s12206-016-1002-z.
[11] W. Sun, F. Zhang, H. Li, H. Wang, and S. Luo. Co-simulation study on vibration control of multistage gear transmission system based on multiple control algorithms. Proceedings of the 2017 International Conference on Advanced Mechatronic Systems, pages 1–7, Xiamen, China, 2017. doi: 10.1109/ICAMechS.2017.8316474.
[12] W. Sun, F. Zhang, W. Zhu, H. Wang, S. Luo, and H. Li. A comparative study based on different control algoritms for suppressing multistage gear transmission system vibrations. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/7984283.
[13] H. Wang, F. Zhang, H. Li, W. Sun, and S. Luo. Experimental analysis of an active vibration frequency control in gearbox. Shock and Vibration, 2018:ID7984283, 2018. doi: 10.1155/2018/1402697.
[14] C. Lauwerys, J. Swevers, and P. Sas. Robust linear control of an active suspension on a quarter car test-rig. Control Engineering Practice, 13(5):577–586, 2005. doi: 10.1016/ j.conengprac.2004.04.018.
[15] W. Sun, J. Li, Y. Zhao, and H. Gao. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics, 21(1):250–260, 2011. doi: 10.1016/j.mechatronics.2010.11.001.
[16] A. Farshidianfar, A. Saghafi, S.M. Kalami, and I. Saghafi. Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method. Meccanica, 47:437–453, 2012. doi: 10.1007/s11012-011-9451-z.
[17] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4-6 October, 1995. doi: doi.org/10.1109/MHS.1995.494215">10.1109/MHS.1995.494215.
[18] J.F. Schutte and A.A. Groenwold. A study of global optimization using particle swarms. Journal of Global Optimization, 31:93–108, 2005. doi: 10.1007/s10898-003-6454-x.
[19] D. Sedighizadeh and E. Masehian. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5):1793-8201, 2009.
[20] A. Saghafi, A. Farshidianfar, and A.A. Akbari. Vibrations control of gear-bearing dynamic system. Modares Mechanical Engineering, 14(6):135-143, 2014. (in Persian).
[21] A. Farshidianfar and A. Saghafi. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dynamics, 75:783–806, 2014. doi: 10.1007/s11071-013-1104-4.
[22] A. Saghafi and A. Farshidianfar. An analytical study of controlling chaotic dynamics in a spur gear system. Mechanism and Machine Theory, 96(1):179–191, 2016. doi: 10.1016/j.mechmachtheory.2015.10.002.
[23] G. Pinte, S. Devos, B. Stallaert, W. Symens, J. Swevers, and P. Sas. A piezo-based bearing for the active structural acoustic control of rotating machinery. Journal of Sound and Vibration, 329(9):1235–1253, 2010. doi: 10.1016/j.jsv.2009.10.036.
[24] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. 2nd ed., Wiley Interscience, New York, 2005.
Go to article

Authors and Affiliations

Amin Saghafi
1
ORCID: ORCID
Anooshirvan Farshidianfar
2

  1. Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
  2. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

The structural damages can lead to structural failure if they are not identified at early stages. Different methods for detecting and locating the damages in structures have been always appealing to designers in the field. Due to direct relation between the stiffness, natural frequency, and mode shapes in the structure, the modal parameters could be used for the purpose of detecting and locating the damages in structures. In the current study, a new damage indicator named “DLI” is proposed, using the mode shapes and their derivatives. A finite element model of a beam is used, and the numerical model is validated against experimental data. The proposed index is investigated for two beams with different support conditions and the results are compared with those of two well-known indices – MSEBI and CDF. To show the capability and accuracy of the proposed index, the damages with low severity at various locations of the structures containing the elements near the supports were investigated. The results under noisy conditions are investigated by considering 3% and 5% noise on modal data. The results show a high level of accuracy of the proposed index for identifying the location of the damaged elements in beams.
Go to article

Bibliography

[1] M. Dilena, M.F. Dell’Oste, and A. Morassi. Detecting cracks in pipes filled with fluid from changes in natural frequencies. Mechanical Systems and Signal Processing, 25(8):3186–3197, 2011. doi: 10.1016/j.ymssp.2011.04.013.
[2] J.M. Dulieu-Barton, W.J. Staszewski, and K. Worden. Structural Damage Assessment Using Advanced Signal Processing Procedures: Proceedings of the International Conference on Damage Assessment of Structures (DAMAS '97). Sheffield, England, 30 June - 2 July, 1997, Sheffield Academic Press, 1997,
[3] W. Xu, M. Cao, W. Ostachowicz, M. Radzieński, and N. Xia. Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates. Journal of Sound and Vibration, 347:266–278, 2015. doi: 10.1016/j.jsv.2015.02.038.
[4] D.V. Jauregui and C.R. Farrar. Damage identification algorithms applied to numerical modal data from a bridge. In: 14th International Modal Analysis Conference, Dearborn, USA, 12-15 February, 1996.
[5] N. Navabian, M. Bozorgnasab, R. Taghipour, and O. Yazdanpanah. Damage identification in plate-like structure using mode shape derivatives. Archive of Applied Mechanics, 86:819–830, 2016. doi: 10.1007/s00419-015-1064-x.
[6] N. Navabian, R. Taghipour, M. Bozorgnasab, and J. Ghasemi. Damage evaluation in plates using modal data and firefly optimisation algorithm. International Journal of Structural Engineering, 9(1):50-69, 2018. doi: 10.1504/IJSTRUCTE.2018.090750.
[7] M.M. Fayyadh, H.A. Razak, and Z. Ismail. Combined modal parameters-based index for damage identification in a beamlike structure: theoretical development and verification. Archives of Civil and Mechanical Engineering, 11(3):587–609, 2011. doi: 0.1016/S1644-9665(12)60103-4.
[8] A. Tomaszewska and M. Szafrański. Study on applicability of two modal identification techniques in irrelevant cases. Archives of Civil and Mechanical Engineering, 20:13, 2020. doi: 10.1007/s43452-020-0014-8.
[9] H. Hasni, A.H. Alavi, P. Jiao, and N. Lajnef. Detection of fatigue cracking in steel bridge girders: A support vector machine approach. Archives of Civil and Mechanical Engineering, 17(3):609–622, 2017. doi: 10.1016/j.acme.2016.11.005.
[10] J. Ciambella and F. Vestroni. The use of modal curvatures for damage localization in beam-type structures. Journal of Sound and Vibration, 340:126–137, 2015. doi: 10.1016/j.jsv.2014.11.037.
[11] D. Donskoy and D. Liu. Vibro-acoustic modulation baseline-free non-destructive testing. Journal of Sound and Vibration, 492:115808, 2021. doi: 10.1016/j.jsv.2020.115808.
[12] C.R. Farrar, S.W. Doebling, and D.A. Nix. Vibration–based structural damage identification. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 359(1778):131–149, 2001. doi: 10.1098/rsta.2000.0717.
[13] G.M. Owolabi, A.S.J. Swamidas, and R. Seshadri. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration, 265(1):1–22, 2003. doi: 10.1016/S0022-460X(02)01264-6.
[14] M.M. Fayyadh and H.A. Razak. Weighting method for modal parameter based damage detection algorithms. International Journal of Physical Sciences, 6(20):4816–4825, 2011.
[15] R.K. Behera, A. Pandey, and D.R. Parhi. Numerical and experimental verification of a method for prognosis of inclined edge crack in cantilever beam based on synthesis of mode shapes. Procedia Technology, 14:67–74, 2014. doi: 10.1016/j.protcy.2014.08.010.
[16] S. Karimi, M. Bozorgnasab, R. Taghipour, and M. M. Alipour. A novel spring-based model for damage investigation of functionally graded beams. Journal of Solid Mechanics, 2021 (in print).
[17] S.S. Rao. The Finite Element Method in Engineering, 6th edition. Butterworth-Heinemann, 2018.
[18] A.K. Pandey, M. Biswas, and M.M. Samman. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2):321–332, 1991. doi: 10.1016/0022-460X(91)90595-B.
[19] S.M. Seyedpoor. A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization. International Journal of Non-Linear Mechanics, 47(1):1–8, 2012. doi: 10.1016/j.ijnonlinmec.2011.07.011.
[20] M.M.A. Wahab and G. De Roeck. Damage detection in bridges using modal curvatures: application to a real damage scenario. Journal of Sound and Vibration, 226(2):217–235, 1999. doi: 10.1006/jsvi.1999.2295.
[21] A. Esfandiari, F. Bakhtiari-Nejad, and A. Rahai. Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation. International Journal of Mechanical Sciences, 70:79–89, 2013. doi: 10.1016/j.ijmecsci.2013.02.006.
Go to article

Authors and Affiliations

Reza Taghipour
1
ORCID: ORCID
Mina Roodgar Nashta
1
ORCID: ORCID
Mohsen Bozorgnasab
2
ORCID: ORCID
Hessam Mirgolbabaei
3
ORCID: ORCID

  1. Department of Civil Engineering, University of Mazandaran, Babolsar, Iran.
  2. Department of Civil Engineering, University of Mazandaran, Babolsar, Iran
  3. Department of Mechanical and Industrial Engineering, University of Minnesota Duluth, Duluth, Minnesota, United States of America.
Download PDF Download RIS Download Bibtex

Abstract

In this work, continuous third-order sliding mode controllers are presented to control a five degrees-of-freedom (5-DOF) exoskeleton robot. This latter is used in physiotherapy rehabilitation of upper extremities. The aspiration is to assist the movements of patients with severe motor limitations. The control objective is then to design adept controllers to follow desired trajectories smoothly and precisely. Accordingly, it is proposed, in this work, a class of homogeneous algorithms of sliding modes having finite-time convergence properties of the states. They provide continuous control signals and are robust regardless of non-modeled dynamics, uncertainties and external disturbances. A comparative study with a robust finite-time sliding mode controller proposed in literature is performed. Simulations are accomplished to investigate the efficacy of these algorithms and the obtained results are analyzed.
Go to article

Bibliography

[1] N. Rehmat, J. Zuo, W. Meng, Q. Liu, S.Q. Xie, and H. Liang. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. International Journal of Intelligent Robotics and Applications, 2(3):283–295, 2018. doi: 10.1007/s41315-018-0064-8.
[2] A. Demofonti, G. Carpino, L. Zollo, and M.J. Johnson. Affordable robotics for upper limb stroke rehabilitation in developing countries: a systematic review. IEEE Transactions on Medical Robotics and Bionics, 3(1):11–20, 2021. doi: 10.1109/TMRB.2021.3054462.
[3] A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010. doi: 10.1056/NEJMoa0911341.
[4] P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. Journal of NeuroEngineering and Rehabilitation, 6(1):46, 2009. doi: 10.1186/1743-0003-6-46.
[5] A.S. Niyetkaliyev, S. Hussain, M.H. Ghayesh, and G. Alici. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Transactions on Human-Machine Systems, 47(6):1134–1145, 2017. doi: 10.1109/THMS.2017.2700634.
[6] A. Michnik, J. Brandt, Z. Szczurek, M. Bachorz, Z. Paszenda, R. Michnik, J. Jurkojc, W. Rycerski, and J. Janota. Rehabilitation robot prototypes developed by the ITAM Zabrze. Archive of Mechanical Engineering, 61(3):433–444, 2014. doi: 10.2478/meceng-2014-0024.
[7] A. Gmerek. Mechanical and hardware architecture of the semi-exoskeleton arm rehabilitation robot. Archive of Mechanical Engineering, 60(4):557-574, 2013. doi: 10.2478/meceng-2013-0034.
[8] I. Büsching, A. Sehle, J. Stürner, and J. Liepert. Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation – a pilot study. Journal of NeuroEngineering and Rehabilitation, 15(1):72, 2018. doi: 10.1186/s12984-018-0415-6.
[9] R. Fellag, T. Benyahia, M. Drias, M. Guiatni, and M. Hamerlain. Sliding mode control of a 5 dofs upper limb exoskeleton robot. In 2 017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B), pages 1–6, Boumerdes, Algeria, 29-31 Oct. 2017. doi: 10.1109/ICEE-B.2017.8192098.
[10] M.H. Rahman, M. Saad, J-P. Kenné, and P.S. Archambault. Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control, Automation and Systems, 11(1):92–104, 2013. doi: 10.1007/s12555-011-0135-1.
[11] T. Madani, B Daachi, and K. Djouani. Non-singular terminal sliding mode controller: Application to an actuated exoskeleton. Mechatronics, 33:136–145, 2016. doi: 10.1016/j.mechatronics.2015.10.012.
[12] A. Abooee, M.M. Arefi, F. Sedghi, and V. Abootalebi. Robust nonlinear control schemes for finite-time tracking objective of a 5-DOF robotic exoskeleton. International Journal of Control, 92(9):2178–2193, 2019. doi: 10.1080/00207179.2018.1430379.
[13] A. Riani, T. Madani, A. Benallegue, and K. Djouani. Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Engineering Practice, 75:108–117, 2018. doi: 10.1016/j.conengprac.2018.02.013.
[14] A. Jebri, T. Madani, and K. Djouani. Adaptive continuous integral-sliding-mode controller for wearable robots: Application to an upper limb exoskeleton. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pages 766–771, Toronto, Canada, 24-28 June 2019. doi: 10.1109/ICORR.2019.8779431.
[15] C.A. Zamora, J.A. Moreno, and S. Kamal. Control integral discontinuo para sistemas mecánicos. In Congreso Nacional de Control Automático 2013, pages 11–16. Ensenada, Mexico, Oct. 16- 18, 2013. (in Spanish).
[16] J.A. Moreno. Discontinuous integral control for systems with relative degree two. In: J. Clempner, W.Yu (eds.), New Perspectives and Applications of Modern Control Theory, pages 187–218. Springer, 2018. doi: 10.1007/978-3-319-62464-8_8.
[17] S. Kamal, J.A. Moreno, A. Chalanga, B. Bandyopadhyay, and L.M. Fridman. Continuous terminal sliding-mode controller. Automatica, 69:308–314, 2016. doi: 10.1016/j.automatica.2016.02.001.
[18] S. Kamal, A. Chalanga, J.A. Moreno, L. Fridman, and B. Bandyopadhyay. Higher order supertwisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS), pages 1–5, Nantes, France, 29 June – 2 July 2014. doi: 10.1109/VSS.2014.6881129.
[19] A. Levant. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6):1247–1263, 1993. doi: 10.1080/00207179308923053.
[20] J.A. Moreno and M. Osorio. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4):1035–1040, 2012. doi: 10.1109/TAC.2012.2186179.
[21] J.A. Moreno and M. Osorio. A Lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE Conference on Decision and Control, pages 2856–2861, Cancun, Mexico, 9-11 December 2008. doi: 10.1109/CDC.2008.4739356.
[22] R. Fellag, M. Hamerlain, S. Laghrouche, M. Guiatni, and N. Achour. Homogeneous finite time higher order sliding mode control applied to an upper limb exoskeleton robot. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pages 355–360, Paris, France, 23-26 April 2019. doi: 10.1109/CoDIT.2019.8820676.
[23] H-B. Kang and J-H. Wang. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. ISA Transactions, 52(6):844–852, 2013. doi: 10.1016/j.isatra.2013.05.003.
[24] H-B. Kang and J-H. Wang. Adaptive robust control of 5 DOF upper-limb exoskeleton robot. International Journal of Control, Automation and Systems, 13(3):733–741, 2015. doi: 10.1007/s12555-013-0389-x.
[25] B.O. Mushage, J.C. Chedjou, and K.Kyamakya. Fuzzy neural network and observer-based faulttolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dynamics, 87(3):2021–2037, 2017. doi: 10.1007/s11071-016-3173-7.
[26] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 2008.
[27] A. Levant. Homogeneity approach to high-order sliding mode design. Automatica, 41(5):823–830, 2005. doi: 10.1016/j.automatica.2004.11.029.
[28] S. Kamal, A. Chalanga, V. Thorat, and B. Bandyopadhyay. A new family of continuous higher order sliding mode algorithm. In: 2015 10th Asian Control Conference (ASCC), pages 1–6, Kota Kinabalu, Malaysia, 31 May – 3 June 2015. doi: 10.1109/ASCC.2015.7244591.
[29] S.P. Bhat and D.S. Bernstein. Finite-time stability of continuous autonomous systems. SIAM Journal of Control and Optimization, 38(3):751–766, 2000. doi: 10.1137/S0363012997321358.
[30] J.J. Craig. Introduction to Robotics: Mechanics and Control, 3rd ed. Pearson Education International, 2009.
[31] J-H.Wang, Z-B. Jiang, X-F.Wang, Y. Zhang, and D. Guo. Kinematics simulation of upper limb rehabilitant robot based on virtual reality techniques. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pages 6681–6683, Deng Feng, China, 8-10 August 2011. doi: 10.1109/AIMSEC.2011.6009874.
Go to article

Authors and Affiliations

Ratiba Fellag
1 3
ORCID: ORCID
Mohamed Guiatni
2
ORCID: ORCID
Mustapha Hamerlain
1
Noura Achour
3

  1. Centre de Développement des Technologies Avancées, Alger, Algérie.
  2. Laboratoire LCS^2, Ecole Militaire Polytechnique, Alger, Algérie.
  3. Laboratoire LRPE, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algérie.
Download PDF Download RIS Download Bibtex

Abstract

Vibrational stress relief (VSR) treatment as a method of stress relief is currently performed on different alloys and sizes as an appropriate alternative for thermal stress relief (TSR) method. Although many studies have been performed to extend the knowledge about this process, analytical studies in the field of VSR process seems to require wider efforts to introduce the concept more clearly and extensively. In this study, a theoretical model is proposed based on an analytical equation. The proposed equation was modified in terms of required variables including frequency, amplitude, and vibration duration to encompass more practical parameters compared to the previous models. Thus, essential VSR parameters including the number of cycles as a representative of treatment duration, strain rate as a representative of frequency, and the amplitude were embedded in the model to make it comprehensively practical. Experimental tests were also performed and residual stress distribution was measured by X-ray diffractometry (XRD) method for certain points to compare the experimental results with the theoretical output. An acceptable range of conformation was observed between theoretical and experimental results.
Go to article

Bibliography

[1] R. Dawson. Residual stress relief by vibration. Ph.D. Thesis, University of Liverpool, UK, 1975.
[2] R.T. McGoldrick and H.E. Saunders. Experiments in stress-relieving castings and welded structures by vibration. Journal of the American Society of Naval Engineers, 55(4):589–609, 1943.
[3] P. Sędek and M.S. Węglowski. Application of mechanical vibration in the machine building technology. Key Engineering Materials, 504-506:1383–1388, 2012. doi: 10.4028/www.scientific.net/kem.504-506.1383.
[4] I.K. Lokshin. Vibration treatment and dimensional stabilization of castings. Russian Castings Production, 10:454–457, 1965.
[5] H. Moore. A study of residual stresses and size effect and a study of the effect of repeated stresses on residual stresses due to shot peening of two steels. Proceedings of the Society for Experimental Stress Analysis, 2(1):170–177, 1944.
[6] A. Jurcius, A.V Valiulis, O. Černašėjus, K.J. Kurzydlowski, A.Jaskiewicz, and M. Lech-Grega. Influence of vibratory stress relief on residual stresses in weldments and mechanical properties of structural steel joint. Journal of Vibroengineering, 12(1):133–141, 2010.
[7] K. Liao, Y-X. Wu, and J-K. Guo. Application of VSR technique in stress reduction of aluminum alloy thick plate and its limitation. Journal of Vibration and Shock, 31(14):70–73, 2012. (in Chinese).
[8] M.B. Khan and T. Iqbal. Vibratory stress relief in D-406 aerospace alloy. In: TMS Annual Meeting, pages 807–814, San Francisco, CA, USA, 2009.
[9] J-S. Wang, C-C. Hsieh, C-M. Lin, C-W. Kuo, and W. Wu. Texture evolution and residual stress relaxation in a cold-rolled Al-Mg-Si-Cu alloy using vibratory stress relief technique. Metallurgical and Materials Transactions A, 44(2):806–818, 2013. doi: 10.1007/s11661-012-1450-8.
[10] W. He, B.P. Gu, J.Y. Zheng, and R.J. Shen. Research on high-frequency vibratory stress relief of small Cr12MoV quenched specimens. Applied Mechanics and Materials, 157-158:1157–1161, 2012. doi: 10.4028/www.scientific.net/AMM.157-158.1157.
[11] J-S. Wang, C-W. Kuo, C-C. Hsieh, H-C. Liao, and W. Wu. The effects of waveform in residual stress relief by vibration technique. In: Trends in Welding Research 2012: Proceedings of the 9th International Conference, pages 427-431, Chicago, IL, USA, 4–8 June, 2012.
[12] C. Lin, S. Wu, S. Lü, P. An, and L. Wan. Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al–Si alloys with 2% Fe. Intermetallics, 32:176-183, 2013. doi: 10.1016/j.intermet.2012.09.001.
[13] T. Jia, Z. Zhang, C. Tang, and Y. Zhang. Numerical simulation of stress-relief effects of protective layer extraction. Archives of Mining Sciences, 58(2):521–540, 2013. doi: 10.2478/amsc-2013-0035.
[14] Y. Yang. Understanding of vibration stress relief with computation modeling. Journal of Materials Engineering and Performance, 18(7):856–86, 2009. doi: 10.1007/s11665-008-9310-9.
[15] S. Kwofie. Plasticity model for simulation, description and evaluation of vibratory stress relief. Materials Science and Engineering: A, 516(1-2):154–161, 2009. doi: 10.1016/j.msea.2009.03.014.
[16] S. Aoki, T. Nishimura, T. Hiroi, and S. Hirai. Reduction method for residual stress of welded joint using harmonic vibrational load. Nuclear Engineering and Design, 237(2):206–212. 2007. doi: 10.1016/j.nucengdes.2006.06.004.
[17] D. Rao, D. Wang, L. Chen, and C. Ni. The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress. International Journal of Fatigue, 29(1):192–196, 2007. doi: 10.1016/j.ijfatigue.2006.02.047.
[18] H. Wang and Z. Wang. The embedded VSR system design based on ARM and frequency spectrum analysis. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pages 488–492, Wuhan, China, 19-20 Dec., 2008. doi: 10.1109/PACIIA.2008.81.
[19] M.J. Vardanjani, M. Ghayour, and R.M. Homami. Analysis of the vibrational stress relief for reducing the residual stresses caused by machining. Experimental Techniques, 40(2):705–713, 2016. doi: 10.1007/s40799-016-0071-3.
[20] M.J. Vardanjani, A. Araee, J. Senkara, J. Jakubowski, and J. Godek. Metallurgical effects of shunting current on resistance spot-welded joints of AA2219 sheets. Journal of Materials Engineering and Performance, 25(8):3506–3517, 2016. doi: 10.1007/s11665-016-2168-3.
[21] M.J. Vardanjani, A. Araee, J. Senkara, M. Sohrabian, and R. Zarandooz. Influence of shunting current on the metallurgical and mechanical behaviour of resistance spot-welded joints in AA2219 joints. Strojniški vestnik – Journal of Mechanical Engineering, 62(11):625–635, 2016. doi: 10.5545/sv-jme.2016.3682.
[22] B. Kılıç and Ö. Özdemir. Vibration and stability analyses of functionally graded beams. Archive of Mechanical Engineering, 68(1):93–113, 2021. doi: 10.24425/ame.2021.137043.
[23] P. Vergeer. Vibration isolation of dimple plate heat exchangers. M.Sc. Thesis. North-West University, Potchefstroom Campus, North-West University, South Africa, 2013.
[24] S. Li, Y. Kang, G. Zhu, and S. Kuang. Effects of strain rates on mechanical properties and fracture mechanism of DP780 dual phase steel. Journal of Materials Engineering and Performance, 24(6):2426–2434, 2015. doi: 10.1007/s11665-015-1495-0.
[25] A. Grudz. Reducing welding stresses in plates by vibration. Automatic Welding USSR, 25(7):70–71, 1972.
[26] A.S.M.Y. Munsi, A.J. Waddell, and C.A. Walker. Modification of welding stresses by flexural vibration during welding. Science and Technology of Welding and Joining, 6(3):133–138, 2001. doi: 10.1179/136217101101538668.
Go to article

Authors and Affiliations

Mehdi Jafari Vardanjani
1
Jacek Senkara
2
ORCID: ORCID

  1. Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
  2. Department of Welding Engineering,Warsaw University of Technology,Warsaw, Poland.
Download PDF Download RIS Download Bibtex

Abstract

In this paper, neural networks are presented to solve the inverse kinematic models of continuum robots. Firstly, the forward kinematic models are calculated for variable curvature continuum robots. Then, the forward kinematic models are implemented in the neural networks which present the position of the continuum robot’s end effector. After that, the inverse kinematic models are solved through neural networks without setting up any constraints. In the same context, to validate the utility of the developed neural networks, various types of trajectories are proposed to be followed by continuum robots. It is found that the developed neural networks are powerful tool to deal with the high complexity of the non-linear equations, in particular when it comes to solving the inverse kinematics model of variable curvature continuum robots. To have a closer look at the efficiency of the developed neural network models during the follow up of the proposed trajectories, 3D simulation examples through Matlab have been carried out with different configurations. It is noteworthy to say that the developed models are a needed tool for real time application since it does not depend on the complexity of the continuum robots' inverse kinematic models.
Go to article

Bibliography

[1] D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99–117, 2008. doi: 10.1080/11762320802557865.
[2] G. Robinson and J.B.C. Davies. Continuum robots – a state of the art. In Proceedings 1999 IEEE International Conference on Robotics and Automation, volume 4, pages 2849–2854, 1999. doi: 10.1109/ROBOT.1999.774029.
[3] I.D. Walker. Continuous backbone “continuum” robot manipulators. International Scholarly Research Notices, 2013:726506, 2013. doi: 10.5402/2013/726506.
[4] H.-S. Yoon and B.-J. Yi. Development of a 4-DOF continuum robot using a spring backbone. The Journal of Korea Robotics Society, 3(4):323–330, 2008.
[5] M. Li, R. Kang, S. Geng, and E. Guglielmino. Design and control of a tendon-driven continuum robot. Transactions of the Institute of Measurement and Control, 40(11):3263–3272, 2018. doi: 10.1177/0142331216685607.
[6] G. Gao, H. Wang, J. Fan, Q. Xia, L. Li, and H. Ren. Study on stretch-retractable single-section continuum manipulator. Advanced Robotics, 33(1):1–12, 2019. doi: 10.1080/01691864.2018.1554507.
[7] C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario. Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 4(1):15006, 2009. doi: 10.1088/1748- 3182/4/1/015006.
[8] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration & Biomimetics, 7(2):25006, 2012. doi: 10.1088/1748-3182/7/2/025006.
[9] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi. Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on Robotics, 30(5):1109–1122, 2014. doi: 10.1109/TRO.2014.2325992.
[10] Y. Peng, Y. Liu, Y. Yang, N. Liu, Y. Sun, Y. Liu, H. Pu, S. Xie, and J. Luo. Development of continuum manipulator actuated by thin McKibben pneumatic artificial muscle. Mechatronics, 60:56–65, 2019. doi: 10.1016/j.mechatronics.2019.05.001.
[11] G. Gao, H. Ren, Q. Xia, H. Wang, and L. Li. Stretched backboneless continuum manipulator driven by cannula tendons. Industrial Robot, 45(2):237–243, 2018. doi: 10.1108/IR-06-2017-0124.
[12] R.J. Webster III and B.A. Jones. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–1683, 2010. doi: 10.1177/0278364910368147.
[13] S. Mosqueda, Y. Moncada, C. Murrugarra, and H. León-Rodriguez. Constant curvature kinematic model analysis and experimental validation for tendon driven continuum manipulators. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics ICINCO (2), volume 2, pages 211–218, 2018. doi: 10.5220/0006913502110218.
[14] A. Ghoul, K. Kara, M. Benrabah, and M.L. Hadjili. Optimized nonlinear sliding mode control of a continuum robot manipulator. Journal of Control, Automation and Electrical Systems, pages 1–9, 2022. doi: 10.1007/s40313-022-00914-1.
[15] C. Escande. Towards Modeling of a Class of Bionic Manipulator Robots. PhD Thesis, Lille, France, 2013.
[16] T. Mahl, A. Hildebrandt, and O. Sawodny. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Transactions on Robotics, 30(4):935– 949, 2014. doi: 10.1109/TRO.2014.2314777.
[17] S. Djeffal, A. Amouri, and C. Mahfoudi. Kinematics modeling and simulation analysis of variable curvature kinematics continuum robots. UPB Scientific Bulletin, Series D: Mechanical Engineering, 83:28–42, 2021.
[18] S. Djeffal, C. Mahfoudi, and A. Amouri. Comparison of three meta-heuristic algorithms for solving inverse kinematics problems of variable curvature continuum robots. In 2021 European Conference on Mobile Robots (ECMR), pages 1–6, 2021. doi: 10.1109/ECMR50962.2021.9568789.
[19] O. Lakhal, A. Melingui, A. Shahabi, C. Escande, and R. Merzouki. Inverse kinematic modeling of a class of continuum bionic handling arm. In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 1337–1342, 2014. doi: 10.1109/AIM.2014.6878268.
[20] D. Trivedi, A. Lotfi, and C.D. Rahn. Geometrically exact dynamic models for soft robotic manipulators. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1497–1502, 2007. doi: 10.1109/IROS.2007.4399446.
[21] A. Amouri, C. Mahfoudi, A. Zaatri, O. Lakhal, and R. Merzouki. A metaheuristic approach to solve inverse kinematics of continuum manipulators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(5):380– 394, 2017. doi: 10.1177/0959651817700779.
[22] E. Shahabi and C.-H. Kuo. Solving inverse kinematics of a planar dual-backbone continuum robot using neural network. In B. Corves, P. Wenger, and M. Hüsing, editors, EuCoMeS 2018, pages 355–361. Springer, Cham, 2019. doi: 10.1007/978-3-319-98020-1_42.
[23] T.G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi. Learning global inverse kinematics solutions for a continuum robot. In V. Parenti-Castelli andW. Schiehlen, editors, ROMANSY 21 - Robot Design, Dynamics and Control, pages 47–54. Springer, Cham, 2016. doi: 10.1007/978-3-319-33714-2_6.
[24] L. Jiajia, D. Fuxin, L. Yibin, L. Yanqiang, Z. Tao, and Z. Gang. A novel inverse kinematics algorithm using the Kepler oval for continuum robots. Applied Mathematical Modelling, 93:206–225, 2021. doi: 10.1016/j.apm.2020.12.014.
[25] D.Y. Kolpashchikov, N.V. Laptev, V.V. Danilov, I.P. Skirnevskiy, R.A. Manakov, and O.M. Gerget. FABRIK-based inverse kinematics for multi-section continuum robots. In 2018 18th International Conference on Mechatronics-Mechatronika (ME), pages 1–8. IEEE, 2018.
[26] R. Köker, C. Öz, T. Çakar, and H. Ekiz. A study of neural network based inverse kinematics solution for a three-joint robot. Robotics and Autonomous Systems, 49(3-4):227–234, 2004. doi: 10.1016/j.robot.2004.09.010.
[27] R.Y. Putra, S. Kautsar, R.Y. Adhitya, M. Syai’in, N. Rinanto, I. Munadhif, S.T. Sarena, J. Endrasmono, and A. Soeprijanto. Neural network implementation for invers kinematic model of arm drawing robot. In 2016 International Symposium on Electronics and Smart Devices (ISESD), pages 153–157, 2016. doi: 10.1109/ISESD.2016.7886710.
[28] N. Bigdeli, K. Afsar, B.I. Lame, and A. Zohrabi. Modeling of a five link biped robot dynamics using neural networks. Journal of Applied Sciences, 8(20):3612–3620, 2008.
[29] Z. Bingul, H.M. Ertunc, and C. Oysu. Comparison of inverse kinematics solutions using neural network for 6r robot manipulator with offset. In 2005 ICSC Congress on Computational Intelligence Methods and Applications, page 5, 2005. doi: 10.1109/CIMA.2005.1662342.
[30] X. Zhang, Y. Liu, D.T. Branson, C. Yang, J. S Dai, and R. Kang. Variable-gain control for continuum robots based on velocity sensitivity. Mechanism and Machine Theory, 168:104618, 2022. doi: 10.1016/j.mechmachtheory.2021.104618.
[31] A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868–871, 1977.
Go to article

Authors and Affiliations

Abdelhamid Ghoul
1
Kamel Kara
1
Selman Djeffal
2
Mohamed Benrabah
3
Mohamed Laid Hadjili
4

  1. Université of Blida 1, Laboratoire des systèmes électriques et télécommande, Faculty of Technology, Blida, Algeria
  2. University of Larbi Ben M’hidi, Faculty of Science and Applied Sciences, Oum El Bouaghi, Algeria
  3. University of Sciences and Technology Houari Boumediene, Laboratoire des systèmes électriques et télécommande, Faculty of Electrical Engineering, Algiers, Algeria
  4. Haute Ecole Bruxelles, Ecole Supérieure d’Informatique, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an adaptive distributed formation controller for wheeled nonholonomic mobile robots is developed. The dynamical model of the robots is first derived by employing the Euler-Lagrange equation while taking into consideration the presence of disturbances and uncertainties in practical applications. Then, by incorporating fractional calculus in conjunction with fast terminal sliding mode control and consensus protocol, a robust distributed formation controller is designed to assure a fast and finite-time convergence of the robots towards the required formation pattern. Additionally, an adaptive mechanism is integrated to effectively counteract the effects of disturbances and uncertain dynamics. Moreover, the suggested control scheme's stability is theoretically proven through the Lyapunov theorem. Finally, simulation outcomes are given in order to show the enhanced performance and efficiency of the suggested control technique.
Go to article

Bibliography

[1] D. Xu, X. Zhang, Z. Zhu, C. Chen, and P. Yang. Behavior-based formation control of swarm robots. Mathematical Problems in Engineering, 2014:205759, 2014. doi: 10.1155/2014/205759.
[2] G. Lee and D. Chwa. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, 11:127–138, 2018. doi: 10.1007/s11370-017-0240-y.
[3] N. Hacene and B. Mendil. Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking. International Journal of Automation and Computing, 18:766–786, 2021. doi: 10.1007/s11633-020-1264-x.
[4] Z. Pan, D. Li, K. Yang, and H. Deng. Multi-robot obstacle avoidance based on the improved artificial potential field and pid adaptive tracking control algorithm. Robotica, 37(11):1883–1903, 2019. doi: 10.1017/S026357471900033X.
[5] A.D. Dang, H.M. La, T. Nguyen, and J. Horn. Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach. International Journal of Advanced Robotic Systems, 16(3):1729881419847897, 2019. doi: 10.1177/1729881419847897.
[6] M. Maghenem, A. Loría, E. Nuno, and E. Panteley. Consensus-based formation control of networked nonholonomic vehicles with delayed communications. IEEE Transactions on Automatic Control, 66(5):2242–2249, 2020. doi: 10.1109/TAC.2020.3005668.
[7] J.G. Romero, E. Nuño, E. Restrepo, and I. Sarras. Global consensus-based formation control of nonholonomic mobile robots with time-varying delays and without velocity measurements. IEEE Transactions on Automatic Control, 2023. doi: 10.1109/TAC.2023.3264744.
[8] S.-L. Dai, S. He, X. Chen, and X. Jin. Adaptive leader–follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE Transactions on Industrial Informatics, 16(6):3662–3671, 2019. doi: 10.1109/TII.2019.2939263.
[9] J. Hirata-Acosta, J. Pliego-Jiménez, C. Cruz-Hernádez, and R. Martínez-Clark. Leader-follower formation control of wheeled mobile robots without attitude measurements. Applied Sciences, 11(12):5639, 2021. doi: 10.3390/app11125639.
[10] X. Liang, H. Wang, Y.-H. Liu, Z. Liu, and W. Chen. Leader-following formation control of nonholonomic mobile robots with velocity observers. IEEE/ASME Transactions on Mechatronics, 25(4):1747–1755, 2020. doi: 10.1109/TMECH.2020.2990991.
[11] X. Chen, F. Huang, Y. Zhang, Z. Chen, S. Liu, Y. Nie, J. Tang, and S. Zhu. A novel virtual-structure formation control design for mobile robots with obstacle avoidance. Applied Sciences, 10(17):5807, 2020. doi: 10.3390/app10175807.
[12] L. Dong, Y. Chen, and X. Qu. Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Procedia Engineering, 137:415–424, 2016. doi: 10.1016/j.proeng.2016.01.276.
[13] N. Nfaileh, K. Alipour, B. Tarvirdizadeh, and A. Hadi. Formation control of multiple wheeled mobile robots based on model predictive control. Robotica, 40(9):3178–3213, 2022. doi: 10.1017/S0263574722000121.
[14] H. Xiao, C.L.P. Chen, G. Lai, D. Yu, and Y. Zhang. Integrated nonholonomic multi-robot con- sensus tracking formation using neural-network-optimized distributed model predictive control strategy. Neurocomputing, 518:282–293, 2023. doi: 10.1016/j.neucom.2022.11.007.
[15] W. Wang, J. Huang, C. Wen, and H. Fan. Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica, 50(4):1254–1263, 2014. doi: 10.1016/j.automatica.2014.02.028.
[16] Y.H. Moorthy and S. Joo. Distributed leader-following formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach. Neurocomputing, 492:308–321, 2022. doi: 10.1016/j.neucom.2022.04.001.
[17] S. Ik Han. Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Control Theory & Applications, 12(2):282–290, 2018. doi: 10.1049/iet-cta.2017.0351.
[18] C.-C. Tsai, Y.-X. Li, and F.-C. Tai. Backstepping sliding-mode leader-follower consensus formation control of uncertain networked heterogeneous nonholonomic wheeled mobile multirobots. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pages 1407–1412. IEEE, 2017. doi: 10.23919/SICE.2017.8105661.
[19] R. Rahmani, H. Toshani, and S. Mobayen. Consensus tracking of multi-agent systems using constrained neural-optimiser-based sliding mode control. International Journal of Systems Science, 51(14):2653–2674, 2020. doi: 10.1080/00207721.2020.1799257.
[20] R. Afdila, F. Fahmi, and A. Sani. Distributed formation control for groups of mobile robots using consensus algorithm. Bulletin of Electrical Engineering and Informatics, 12(4):2095–2104, 2023. doi: 10.11591/eei.v12i4.3869.
[21] L.-D. Nguyen, H.-L. Phan, H.-G. Nguyen, and T.-L. Nguyen. Event-triggered distributed robust optimal control of nonholonomic mobile agents with obstacle avoidance formation, input constraints and external disturbances. Journal of the Franklin Institute, 360(8):5564–5587, 2023. doi: 10.1016/j.jfranklin.2023.02.033.
[22] Y.-H. Chang, C.-Y. Yang, W.-S. Chan, H.-W. Lin, and C.-W. Chang. Adaptive fuzzy sliding-mode formation controller design for multi-robot dynamic systems. I nternational Journal of Fuzzy Systems, 16(1):121–131, 2014.
[23] X. Chu, Z. Peng, G. Wen, and A. Rahmani. Robust fixed-time consensus tracking with application to formation control of unicycles. IET Control Theory & Applications, 12(1):53–59, 2018. doi: 10.1049/iet-cta.2017.0319.
[24] Y. Cheng, R. Jia, H. Du, G. Wen, and W. Zhu. Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. International Journal of Robust and Nonlinear Control, 28(6):2082–2096, 2018. doi: 10.1002/rnc.4002.
[25] Y. Xie, X. Zhang, W. Meng, S. Zheng, L. Jiang, J. Meng, and S. Wang. Coupled fractional- order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot. ISA Transactions, 108:282–294, 2021. doi: 10.1016/j.isatra.2020.08.025.
[26] J. Bai, G. Wen, A. Rahmani, and Y. Yu. Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay. International Journal of Systems Science, 46(13):2380–2392, 2015. doi: 10.1080/00207721.2014.998411.
[27] R. Cajo, M. Guinaldo, E. Fabregas, S. Dormido, D. Plaza, R. De Keyser, and C. Ionescu. Distributed formation control for multiagent systems using a fractional-order proportional–integral structure. IEEE Transactions on Control Systems Technology, 29(6):2738–2745, 2021. doi: 10.1109/TCST.2021.3053541.
[28] K.K. Ayten, M.H. Çiplak, and A. Dumlu. Implementation a fractional-order adaptive model-based pid-type sliding mode speed control for wheeled mobile robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(8):1067–1084, 2019. doi: 10.1177/0959651819847395.
[29] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo. Fractional Calculus: Models and Numerical Methods, volume 3. World Scientific, 2012.
[30] Y.-H. Chang, C.-W. Chang, C.-L. Chen, and C.-W. Tao. Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):444–457, 2011. doi: 10.1109/TSMCB.2011.2167679.
[31] W. Ren and Beard R.W. Distributed consensus in multi-vehicle cooperative control: Theory and applications. Springer, London, 2007.
[32] T.-L. Liao, J.-J. Yan, and W.-S. Chan. Distributed sliding-mode formation controller design for multirobot dynamic systems. Journal of Dynamic Systems, Measurement, and Control, 139(6):061008, 2017. doi: 10.1115/1.4035614.
Go to article

Authors and Affiliations

Allaeddine Yahia Damani
1
ORCID: ORCID
Zoubir Abdeslem Benselama
1
ORCID: ORCID
Ramdane Hedjar
2
ORCID: ORCID

  1. Laboratory of signal and image processing, Saad Dahlab University Blida 1, Blida, Algeria
  2. Center of Smart Robotics Research CEN, King Saud University, Riyadh, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

In this paper the analysis of backlash influence on the spectrum of torque at the output shaft of a cycloidal gearbox has been performed. The model of the single stage cycloidal gearbox was designed in the MSC Adams. The analysis for the excitation with the torque and the analysis with constant angular velocity of the input shaft were performed. For these analyses, the amplitude spectrums of the output torque for different backlashes was solved using FFT algorithm. The amplitude spectrums of the combined sine functions composed of the impact to impact times between the cycloidal wheel and the external sleeves were computed for verification. The performed studies show, that the backlash has significant influence on the output torque amplitude spectrum. Unfortunately the dependencies between the components of the spectrum and the backlash could not be expressed by linear equations, when vibrations of the output torque in the range of (350 Hz – 600 Hz) are considered. The gradual dependence can be found in the spectrum determined for the combined sine functions with half-periods equal impact-to-impact times. The spectrum is narrower for high values of backlash.
Go to article

Bibliography

[1] M. Blagojević, M. Matejić, and N. Kostić. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnički Vjesnik, 25(2):291–298, 2018, doi: 10.17559/TV- 20160530144431.
[2] M. Wikło, R. Król, K. Olejarczyk, and K. Kołodziejczyk. Output torque ripple for a cycloidal gear train. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(21–22):7270–7281, 2019, doi: 10.1177/0954406219841656.
[3] N. Kumar, V. Kosse, and A. Oloyede. A new method to estimate effective elastic torsional compliance of single-stage Cycloidal drives. Mechanism and Machine Theory, 105:185–198, 2016, doi: 10.1016/j.mechmachtheory.2016.06.023.
[4] C.F. Hsieh. The effect on dynamics of using a new transmission design for eccentric speed reducers. Mechanism and Machine Theory, 80:1–16, 2014, doi: 10.1016/j.mechmachtheory.2014.04.020.
[5] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 19(6):523–527, 2018, doi: 10.24136/atest.2018.125.
[6] K.S. Lin, K.Y. Chan, and J.J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018, doi: 10.1016/j.mechmachtheory.2017.12.028.
[7] L.X. Xu, B.K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019, doi: 10.1016/j.mechmachtheory.2019.03.035.
[8] D.C.H. Yang and J.G. Blanche. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory, 25(5):487–501, 1990, doi: 10.1016/0094-114X(90) 90064-Q.
[9] J.W. Sensinger. Unified approach to cycloid drive profile, stress, and efficiency optimization. Journal of Mechanical Design, 132(2):024503, 2010, doi: 10.1115/1.4000832.
[10] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019, doi: 10.1016/j.jsv.2018.09.054.
[11] Z.Y. Ren, S.M. Mao, W.C. Guo, and Z. Guo. Tooth modification and dynamic performance of the cycloidal drive. Mechanical Systems and Signal Processing, 85:857–866, 2017, doi: 10.1016/j.ymssp.2016.09.029.
[12] L.X. Xu and Y.H. Yang. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mechanism and Machine Theory, 104:327–349, 2016, doi: 10.1016/j.mechmachtheory.2016.06.018.
[13] S. Schmidt, P.S. Heyns, and J.P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques, Mechanical Systems and Signal Processing, vol. 100, pp. 152–166, 2018, doi: 10.1016/j.ymssp.2017.07.032.
[14] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013, doi: 10.1016/j.ymssp.2012.06.021.
[15] Y. Chen, X. Liang, and M.J. Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019, doi: 10.1016/j.ymssp.2019.106342.
[16] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017, doi: 10.1016/j.ymssp.2016.06.016.
[17] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019, doi: 10.1016/j.ymssp.2018.11.049.
[18] S. Schmidt, P.S. Heyns, and K.C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020, doi: 10.1016/j.apacoust.2019.107038.
[19] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017, doi: 10.1016/j.measurement.2017.03.006.
[20] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020, doi: 10.1016/j.measurement.2020.108079.
[21] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019, doi: 10.1016/j.renene.2018.12.094.
[22] R. Król. Resonance phenomenon in the single stage cycloidal gearbox. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering, 68(3):303–320, 2021, doi: 10.24425/ame.2021.137050.
[23] MSC Software. MSC Adams Solver Documentation.
[24] MSC Software. MSC Adams View Documentation.
Go to article

Authors and Affiliations

Roman Król
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

A numerical investigation of thermal prediction of double-pass solar air heater of-counter flow is developed in the present study. The main idea of the current study is that the collector consists of two layers of glass so that the middle layer is glass instead of the usual metal plate. The performance of double-pass solar air heater is studied for a wide range of solar radiation intensities (600, 750 and 900 W/m 2). A FORTRAN-90 program is built to simulate the mathematical model of double-pass solar air heater based on solving steady state two-dimensional Navier-Stokes equations and energy equation based on finite volume method. Turbulence effect is simulated by two equations k-ε module. The results are compared with the results of a previous experimental study and a good agreement was found. From compression calculating efficiency of the present and traditional collector for each solar intensity, it was found that the efficiency of the current collector is higher than that of the traditional one, where the efficiency of the current collector at the solar intensity of (600, 750 and 900) W/m 2 are (0.529, 0.514 and 0.503), respectively, while those of the traditional collector (0.508, 0.492 and 0.481), respectively. In addition to this, the effect of the mass flow rate on the temperature difference of the current proposed collector was studied. Three values of the mass flow rate were studied (0.009,0.018, and 0.027) kg/s at solar intensity of 750 W/m 2. From this it was found that the temperature difference decreases with increasing mass flow rate. Accordingly, the efficiency decreases
Go to article

Bibliography


[1] J.M. Jalil, A.H. Ayaal, and A.A. Hardan. Numerical investigation of thermal performance for air solar collector with multi inlets. IOP Conference Series: Materials Science and Engineering, 765:012036, 2020. doi: 10.1088/1757-899X/765/1/012036.
[2] A. Abene, V. Dubois, M. Le Ray, and A. Ouagued. Study of a solar air flat plate collector: use of obstacles and application for the drying of grape. Journal of Food Engineering, 65(1):15–22, 2004. doi: 10.1016/j.jfoodeng.2003.11.002.
[3] R.S. Gill, S. Singh, and P.P. Singh. Low cost solar air heater. Energy Conversion and Management, 57:131–142, 2012. doi: 10.1016/j.enconman.2011.12.019.
[4] A.E. Kabeel, A. Khalil, S.M. Shalaby, and M.E. Zayed. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management, 113:264–772, 2016. doi: 10.1016/j.enconman.2016.01.068.
[5] A. Sakhrieh and A. Al-Ghandoor. Experimental investigation of the performance of five types of solar collectors. Energy Conversion and Management, 65:715–720, 2013. doi: 10.1016/j.enconman.2011.12.038.
[6] J.M. Jalil, K.F. Sultan, and L.A. Rasheed. Numerical and experimental investigation of solar air collectors performance connected in series. Engineering and Technology Journal, 35(3):190–196, 2017.
[7] J. Assadeg J, A.H.A. Al-Waeli, A. Fudholi, and K. Sopian. Energetic and exergetic analysis of a new double pass solar air collector with fins and phase change material. Solar Energy, 226:260–271, 2021. doi: 10.1016/j.solener.2021.08.056.
[8] J.M. Jalil and S.J. Ali. Thermal investigations of double pass solar air heater with two types of porous media of different thermal conductivity. Engineering and Technology Journal, 39(1):79–88, 2021. doi: 10.30684/etj.v39i1A.1704.
[9] S. Bassem, J.M. Jalil, and S.J. Ismael. Experimental study of double pass water passage in evacuated tube with parabolic trough collector. Journal of Physics: Conference Series, 1973:012058, 2021. doi: 10.1088/1742-6596/1973/1/012058.
[10] J.M. Jalil, R.F. Nothim, and M.M. Hameed. Effect of wavy fins on thermal performance of double pass solar air heater. Engineering and Technology Journal, 39(9):1362–1368, 2021. doi: 10.30684/etj.v39i9.1775.
[11] W. Siddique, A. Raheem, M. Aqeel, S. Qayyum, T, Salamen, K. Waheed, and K. Qureshi. Evaluation of thermal performance factor for solar air heaters with artificially roughened channels. Archive of Mechanical Engineering, 68(2):195–225, 2021. doi: 10.24425/ame.2021.137048.
[12] H.K. Ghritlahre. An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Archives of Thermodynamics, 42(3):115–139, 2021. doi: 10.24425/ather.2021.138112.
[13] A. Kumar, Akshayveer, A.P. Singh, and O.P. Singh. Efficient designs of double-pass curved solar air heaters. Renewable Energy, 160:1105–1118, 2020. doi: 10.1016/j.renene.2020.06.115.
[14] S. Abo-Elfadl, H. Hassan, and M.F. El-Dosoky. Study of the performance of double pass solar air heater of a new designed absorber: An experimental work. Solar Energy, 198:479–489, 2020. doi: 10.1016/j.solener.2020.01.091.
[15] S. Singh. Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater. Renewable Energy, 145:1361–1387, 2020. doi: 10.1016/j.renene.2019.06.137.
[16] H.K. Ghritlahre and P.K. Sahu. A comprehensive review on energy and exergy analysis of solar air heaters. Archives of Thermodynamics, 41(3):183–222, 2020. doi: 10.24425/ather.2020.134577.
[17] S. Dogra, R.D. Jilte, and A. Sharma. Study of performance enhancement of single and double pass solar air heater with change in surface roughness. Journal of Physics: Conference Series, 1531:012091, 2020. doi: 10.1088/1742-6596/1531/1/012091.
[18] S. Sivakumar, K. Siva, and M. Mohanraj. Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-fins. Journal of Thermal Analysis and Calorimetry, 136(1):39–47, 2019. doi: 10.1007/s10973-018-07998-5.
[19] S.M. Salih J.M. Jalil, and S.E. Najim. Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM. Renewable Energy, 143:1053–1066, 2019. doi: 10.1016/j.renene.2019.05.050.
[20] S. Singh, L. Dhruw, and S. Chander. Experimental investigation of a double pass converging finned wire mesh packed bed solar air heater. Journal of Energy Storage, 21:713–723, 2019. doi: 10.1016/j.est.2019.01.003.
[21] P.T. Saravanakumar, D. Somasundaram, and M.M. Matheswaran. Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles. Solar Energy, 180:360–371, 2019. doi: 10.1016/j.solener.2019.01.036.
[22] C.A. Komolafe, I.O. Oluwaleye, O. Awogbemi, and C.O. Osueke. Experimental investigation and thermal analysis of solar air heater having rectangular rib roughness on the absorber plate. Case Studies in Thermal Engineering, 14:100442, 2019. doi: 10.1016/j.csite.2019.100442.
[23] H. Mzad, K. Bey, and R. Khelif. Investigative study of the thermal performance of a trial solar air heater. Case Studies in Thermal Engineering, 13:100373, 2019. doi: 10.1016/j.csite.2018.100373.
[24] S.S. Patel and A. Lanjewar. Exergy based analysis of solar air heater duct with W-shaped rib roughness on the absorber plate. Archives of Thermodynamics, 40(4):21–48, 2019. doi: 10.24425/ather.2019.130006.
[25] A.S. Mahmood. Experimental study on double-pass solar air heater with and without using phase change material. Journal of Engineering. 25(2):1-17. doi: 10.31026/j.eng.2019.02.01.
[26] R.K. Ravi and R.P. Saini. Effect of roughness elements on thermal and thermohydraulic performance of double pass solar air heater duct having discrete multi V-shaped and staggered rib roughness on both sides of the absorber plate. Experimental Heat Transfer, 31(1):47–67, 2018. doi: 10.1080/08916152.2017.1350217.
[27] H. Hassan and S. Abo-Elfadl. Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renewable Energy, 116:728–740, 2018. doi: 10.1016/j.renene.2017.09.047.
[28] S.S. Hosseini, A. Ramiar, and A.A. Ranjbar. Numerical investigation of natural convection solar air heater with different fins shape. Renewable Energy, 117:488–500, 2018. doi: 10.1016/j.renene.2017.10.052.
[29] A.P. Singh and O.P. Singh. Performance enhancement of a curved solar air heater using CFD. Solar Energy, 174:556–569, 2018. doi: 10.1016/j.solener.2018.09.053.
[30] A.M. Rasham and M.M.M. Alaskari. Thermal analysis of double-pass solar air collector with different materials of absorber plate and different dimensions of air channels. International Journal of Science and Research (IJSR), 6(8):901–908, 2017.
[31] R. Kumar and P. Chand. Performance enhancement of solar air heater using herringbone corrugated fins. Energy, 127:271–279, 2017. doi: 10.1016/j.energy.2017.03.128.
[32] M.W. Kareem, K. Habib, and S.A. Sulaiman. Comparative study of single pass collector and double pass solar collector filled with porous media. Asian Journal of Scientific Research, 6(3):445–455, 2013. doi: 10.3923/ajsr.2013.445.455.
[33] A. Fudholi, M.H. Ruslan, M.Y. Othman, M. Yahya, S. Supranto, A. Zaharim, and K. Sopian. Collector efficiency of the double-pass solar air collectors with fins. In Proceedings of the 9th WSEAS International Conference on System Science and Simulation in Engineering, pages 428–434, Japan, 2010.
[34] B.M. Ramani, A. Gupta, and R. Kumar. Performance of a double pass solar air collector. Solar Energy, 84(11):1929–1937, 2010. doi: 10.1016/j.solener.2010.07.007.
[35] H.K. Versteeg and W. Malalsekera. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Pearson Education Ltd. 1995.
[36] B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. In S.V. Patankar, A. Pollard, A.K. Singhal, and S.P. Vanka, editors: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pages 96–116. Pergamon, 1983. doi: 10.1016/B978-0-08-030937-8.50016-7.
[37] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 2018. doi: 10.1201/9781 482234213.
[38] N.I. Dawood, J.M. Jalil, and M.K. Ahmed. Experimental investigation of a window solar air collector with circular-perforated moveable absorber plates. Journal of Physics: Conference Series, 1973:012057, 2021. doi: 10.1088/1742-6596/1973/1/012057.
[39] F. Haghighat, Z. Jiang, J.C.Y. Wang, and F. Allard. Air movement in buildings using computational fluid dynamics. Journal of Solar Energy Engineering, 114(2):84–92, 1992. doi: 10.1115/ 1.2929994.
Go to article

Authors and Affiliations

Hussein Majeed Salih
1
ORCID: ORCID

  1. Electromechanical Engineering Department, University of Technology, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of Portland cement and ground granulated blast furnace slag (GGBFS) added in changed proportions as stabilising agents on soil parameters: uniaxial compressive strength (UCS), Proctor compactness and permeability. The material included dredged clayey silts collected from the coasts of Timrå, Östrand. Soil samples were treated by different ratio of the stabilising agents and water and tested for properties. Study aimed at estimating variations of permeability, UCS and compaction of soil by changed ratio of binders. Permeability tests were performed on soil with varied stabilising agents in ratio H WL B (high water / low binder) with ratio 70/30%, 50/50%, and 30/70%. The highest level of permeability was achieved by ratio 70/30% of cement/slag, while the lowest - by 30/70%. Proctor compaction was assessed on a mixture of ash and green liquor sludge, to determine optimal moisture content for the most dense soil. The maximal dry density at 1.12 g/cm 3 was obtained by 38.75% of water in a binder. Shear strength and P-wave velocity were measured using ISO/TS17892-7 and visualised as a function of UCS. The results showed varying permeability and UCS of soil stabilised by changed ratio of CEM II/GGBS.
Go to article

Bibliography

[1] J.-M. Bian and B.-T. Wang. Study on shear strength of unsaturated soils based on the saturated soils. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 2656–2659, 2011. doi: 10.1109/ICETCE.2011.5775686.
[2] J. Jin. Research of soil compactness tested by instant vibration method. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 585–588, 2011. doi: 10.1109/ICETCE.2011.5774579.
[3] J. Wu, G. Yang, X. Wang, and W. Li. PZT-based soil compactness measuring sheet using electromechanical impedance. IEEE Sensors Journal, 20(17):10240–10250, 2020. doi: 10.1109/JSEN.2020.2991580.
[4] X. Wang, X. Dong, Z. Zhang, J. Zhang, G. Ma, and X. Yang. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning. Transportation Geotechnics, 32:100703, 2022. doi: 10.1016/j.trgeo.2021.100703.
[5] Z. Gao and J. Chai. Method for predicting unsaturated permeability using basic soil properties. Transportation Geotechnics, 34:100754, 2022. doi: 10.1016/j.trgeo.2022.100754.
[6] C.E. Choong, K T.Wong, S.B. Jang, J.-Y. Song, S.-G. An, C.-W. Kang, Y. Yoon, and M. Jang. Soil permeability enhancement using pneumatic fracturing coupled by vacuum extraction for in-situ remediation: Pilot-scale tests with an artificial neural network model. Journal of Environmental Chemical Engineering, 10(1):107075, 2022. doi: 10.1016/j.jece.2021.107075.
[7] L. Pohl, A. Kölbl, D. Uteau, S. Peth, W. Häusler, L. Mosley, P. Marschner, R. Fitzpatrick, and I. Kögel-Knabner. Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined μCT and NanoSIMS analysis. Geoderma, 399:115124, 2021. doi: 10.1016/j.geoderma.2021.115124.
[8] W. Zhang, R. Bai, X. Xu, and W. Liu. An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model. International Communications in Heat and Mass Transfer, 129:105738, 2021. doi: 10.1016/j.icheatmasstransfer.2021.105738.
[9] F.R.A. Ziegler-Rivera, B. Prado, A. Gastelum-Strozzi, J. Márquez, L. Mora, A. Robles, and B. González. Computed tomography assessment of soil and sediment porosity modifications from exposure to an acid copper sulfate solution. Journal of South American Earth Sciences, 108:103194, 2021. doi: 10.1016/j.jsames.2021.103194.
[10] B.C. Ball. Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities. European Journal of Soil Science, 32(4):483–498, 1981. doi: 10.1111/j.1365-2389.1981.tb01724.x.
[11] S. Deviren Saygin, F. Arı, Ç. Temiz, S. Arslan, M.A. Ünal, and G. Erpul. Analysis of soil cohesion by fluidized bed methodology using integrable differential pressure sensors for a wide range of soil textures. Computers and Electronics in Agriculture, 191:106525, 2021. doi: 10.1016/j.compag.2021.106525.
[12] Y. Kim, A. Satyanaga, H. Rahardjo, H. Park, and A.W.L. Sham. Estimation of effective cohesion using artificial neural networks based on index soil properties: A Singapore case. Engineering Geology, 289:106163, 2021. doi: 10.1016/j.enggeo.2021.106163.
[13] V. Marzulli, C.S. Sandeep, K. Senetakis, F. Cafaro, and T. Pöschel. Scale and water effects on the friction angles of two granular soils with different roughness. Powder Technology, 377:813–826, 2021. doi: 10.1016/j.powtec.2020.09.060.
[14] J. Zou, G. Chen, and Z. Qian. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106:1–17, 2019. doi: 10.1016/j.compgeo.2018.10.014.
[15] A. Kaya. Relating equal smectite content and basal spacing to the residual friction angle of soils. Engineering Geology, 108(3):252–258, 2009. doi: 10.1016/j.enggeo.2009.06.013.
[16] Y. Wang and O.V. Akeju. Quantifying the cross-correlation between effective cohesion and friction angle of soil from limited site-specific data. Soils and Foundations, 56(6):1055–1070, 2016. doi: 10.1016/j.sandf.2016.11.009.
[17] E. Stockton, B.A. Leshchinsky, M.J. Olsen, and T.M. Evans. Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Engineering Geology, 249:31–44, 2019. doi: 10.1016/j.enggeo.2018.12.016.
[18] J. Ye. 3D liquefaction criteria for seabed considering the cohesion and friction of soil. Applied Ocean Research, 37:111–119, 2012. doi: 10.1016/j.apor.2012.04.004.
[19] M. Ohno and K. Fukai. Pavement construction work of a road surface by soil cement concrete that used construction remainder soil. In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pages 638–641, 1999. doi: 10.1109/ECODIM.1999.747690.
[20] J. Ling,Y.Yang, Z. Ma, and G.Yang. Engineering properties and treatment of hydraulically reclaimed saline soil in coastal area. In 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, pages 275–278, 2014. doi: 10.1109/ICMTMA.2014.69.
[21] P.P. Kulkarni and J.N. Mandal. Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material. Construction and Building Materials, 314:125363, 2022. doi: 10.1016/j.conbuildmat.2021.125363.
[22] T. Zhang, S. Liu, H. Zhan, C. Ma, and G. Cai. Durability of silty soil stabilized with recycled lignin for sustainable engineering materials. Journal of Cleaner Production, 248:119293, 2020. doi: 10.1016/j.jclepro.2019.119293.
[23] R.W. Day. Soil Testing Manual: Procedures, Classification Data, and Sampling Practices. McGraw Hill Inc., New York, U.S., 2001.
[24] T. Davis. Geotechnical Testing, Observation, and Documentation. American Society of Civil Engineers, Reston, Virginia, U.S., 2 edition, 2008.
[25] D. Hillel. Fundamentals of Soil Physics. Academic Press, New York, U.S., 1 edition, 1980.
[26] L.A.P. Barbosa, K.M. Gerke, and H.H. Gerke. Modelling of soil mechanical stability and hydraulic permeability of the interface between coated biopore and matrix pore regions. Geoderma, 410:115673, 2022. doi: 10.1016/j.geoderma.2021.115673.
[27] I.I. Obianyo, E.N. Anosike-Francis, G.O. Ihekweme, Y. Geng, R. Jin, A.P. Onwualu, and A.B. O. Soboyejo. Multivariate regression models for predicting the compressive strength of bone ash stabilized lateritic soil for sustainable building. Construction and Building Materials, 263:120677, 2020. doi: 10.1016/j.conbuildmat.2020.120677.
[28] L. Bakaiyang, J. Madjadoumbaye, Y. Boussafir, F. Szymkiewicz, and M. Duc. Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15:e00626, 2021. doi: 10.1016/j.cscm.2021.e00626.
[29] Z. Han, S.K. Vanapalli, J-P. Ren, and W-L. Zou. Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5):1187–1199, 2018. doi: 10.1016/j.sandf.2018.06.003.
[30] I. Kamal and Y. Bas. Materials and technologies in road pavements - an overview. Materials Today: Proceedings; 3rd International Conference on Materials Engineering & Science, 42:2660–2667, 2021. doi: 10.1016/j.matpr.2020.12.643.
[31] R. Jauberthie, F. Rendell, D. Rangeard, and L. Molez. Stabilisation of estuarine silt with lime and/or cement. Applied Clay Science, 50(3):395–400, 2010. doi: 10.1016/j.clay.2010.09.004.
[32] P. Lindh and P. Lemenkova. Resonant frequency ultrasonic P-waves for evaluating uniaxial compressive strength of the stabilized slag–cement sediments. Nordic Concrete Research, 65:39–62, 2021. doi: 10.2478/ncr-2021-0012">10.2478/ncr-2021-0012">10.2478/ncr-2021-0012.
[33] M. Arabi and S. Wild. Property changes induced in clay soils when using lime stabilization. Municipal Engineer, 6:85–99, 1989.
[34] P. Lindh. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD thesis, Lund University, Lund, Sweden, 2004.
[35] C. Liu and R.D. Starcher. Effects of curing conditions on unconfined compressive strength of cement- and cement-fiber-improved soft soils. Journal of Materials in Civil Engineering, 25(8):1134–1141, 2013. doi: 10.1061/(ASCE)MT.1943-5533.0000575.
[36] P.J. Venda Oliveira, A.A.S. Correia, and M.R. Garcia. Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil. Journal of Materials in Civil Engineering, 24(7):868–875, 2012. doi: 10.1061/(ASCE)MT.1943-5533.0000454.
[37] H. Ghasemzadeh, A. Mehrpajouh, M. Pishvaei, and M. Mirzababaei. Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite. Journal of Materials in Civil Engineering, 32 (8):04020212, 2020. doi: 10.1061/(ASCE)MT.1943-5533.0003287.
[38] A. Aldaood, M. Bouasker, and M. Al-Mukhtar. Effect of the temperature and curing time on the water transfer of lime stabilized gypseous soil. In Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pages 2325–2333, 2013. doi: 10.1061/9780784412992.272.
[39] H. Yu, J. Yin, A. Soleimanbeigi, and W.J. Likos. Effects of curing time and fly ash content on properties of stabilized dredged material. Journal of Materials in Civil Engineering, 29(10):04017199, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0002032.
[40] W.-S. Oh and Ta-H. Kim. Dependence of the material properties of lightweight cemented soil on the curing temperature. Journal of Materials in Civil Engineering, 26(7):06014008, 2014. doi: 10.1061/ (ASCE)MT.1943-5533.0000940.
[41] I.L. Howard and B.K. Anderson. Time-dependent properties of very high moisture content fine grained soils stabilized with portland and slag cement. In Geotechnical Frontiers 2017, pages 891–899, 2017. doi: 10.1061/9780784480472.095.
[42] N.C. Consoli, R.C. Cruz, and M.F. Floss. Variables controlling strength of artificially cemented sand: Influence of curing time. Journal of Materials in Civil Engineering, 23(5):692–696, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000205.
[43] A.T.M.Z. Rabbi and J.Kuwano. Effect of curing time and confining pressure on the mechanical properties of cement-treated sand. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, pages 996–1005, 2012. doi: 10.1061/9780784412121.103.
[44] S. Chaiyaput, N. Arwaedo, N. Kingnoi, T. Nghia-Nguyen, and J. Ayawanna. Effect of curing conditions on the strength of soil cement. Case Studies in Construction Materials, 16:e01082, 2022. doi: 10.1016/j.cscm.2022.e01082.
[45] P. Lindh and P. Lemenkova. Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica, 35(1):47–59, 2022. doi: 10.5200/baltica.2022.1.4.
[46] A.A. Amadi and A.S. Osu. Effect of curing time on strength development in black cotton soil – quarry fines composite stabilized with cement kiln dust (CKD). Journal of King Saud University - Engineering Sciences, 30(4):305–312, 2018. doi: 10.1016/j.jksues.2016.04.001.
[47] D.Wang, R. Zentar, and N.E. Abriak. Temperature-accelerated strength development in stabilized marine soils as road construction materials. Journal of Materials in Civil Engineering, 29(5):04016281, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0001778.
[48] B. Rekik, M. Boutouil, and A. Pantet. Geotechnical properties of cement treated sediment: influence of the organic matter and cement contents. International Journal of Geotechnical Engineering, 3(2):205–214, 2009. doi: 10.3328/IJGE.2009.03.02.205-214.
[49] E.O. Tastan, T.B. Edil, C.H. Benson, and A.H. Aydilek. Stabilization of organic soils with fly ash. Journal of Geotechnical and Geoenvironmental Engineering, 137(9):819–833, 2011. doi: 10.1061/ (ASCE)GT.1943-5606.0000502.
[50] H. Hasan, H. Khabbaz, and B. Fatahi. Impact of quicklime and fly ash on the geotechnical properties of expansive clay. In Geo-China 2016: Advances in Pavement Engineering and Ground Improvement, pages 93–100, 2016. doi: 10.1061/9780784480014.012.
[51] P. Solanki, N. Khoury, and M. Zaman. Engineering behavior and microstructure of soil stabilized with cement kiln dust. In Geo-Denver 2007: Soil Improvement, pages 1–10, 2007. doi: 10.1061/40916(235)6.
[52] P. Lindh and P. Lemenkova. Evaluation of different binder combinations of cement, slag and CKD for s/s treatment of TBT contaminated sediments. Acta Mechanica et Automatica, 15(4):236–248, 2021. doi: 10.2478/ama-2021-0030.
[53] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk. Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 152:999–1007, 2017. doi: 10.1016/j.conbuildmat.2017.07.070.
[54] X. Bian, L. Zeng, X. Li, X. Shi, S. Zhou, and F. Li. Fabric changes induced by super-absorbent polymer on cement–lime stabilized excavated clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(5):1124–1135, 2021. doi: 10.1016/j.jrmge.2021.03.006.
[55] S. Andavan and V.K. Pagadala. A study on soil stabilization by addition of fly ash and lime. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:1125–1129, 2020. doi: 10.1016/j.matpr.2019.11.323.
[56] P. Indiramma, Ch. Sudharani, and S. Needhidasan. Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment – an experimental study. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:694–700, 2020. doi: 10.1016/j.matpr.2019.09.147.
[57] C.A. Mozejko and F.M. Francisca. Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag. Construction and Building Materials, 239:117901, 2020. doi: 10.1016/j.conbuildmat.2019.117901.
[58] M.P. Durante Ingunza, K.L. de Araújo Pereira, and O F. dos Santos Junior. Use of sludge ash as a stabilizing additive in soil-cement mixtures for use in road pavements. Journal of Materials in Civil Engineering, 27(7):06014027, 2015. doi: 10.1061/(ASCE)MT.1943-5533.0001168.
[59] M.M. Al-Sharif and M.F. Attom. The use of burned sludge as a new soil stabilizing agent. In National Conference Environmental and Pipeline Engineering 2000, pages 378–388, 2000. doi: 10.1061/40507(282)42.
[60] P. Lindh. Optimizing binder blends for shallow stabilisation of fine-grained soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 5(1):23–34, 2001. doi: 10.1680/grim.2001.5.1.23.
[61] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[62] P. Lindh and M.G. Winter. Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology, 36(4):321–330, 2003. doi: 10.1144/1470-9236/03-018.
[63] P. Xu, Q. Zhang, H. Qian, M. Li, and F. Yang. An investigation into the relationship between saturated permeability and microstructure of remolded loess: A case study from Chinese Loess Plateau. Geoderma, 382:114774, 2021. doi: 10.1016/j.geoderma.2020.114774.
[64] A. Anagnostopoulos, G. Koukis, N. Sabatakakis, and G. Tsiambaos. Empirical correlations of soil parameters based on Cone Penetration Tests (CPT) for Greek soils. Geotechnical and Geological Engineering, 21:377–387, 2003. doi: 10.1023/B:GEGE.0000006064.47819.1a.
[65] H. Källén, A. Heyden, K. Åström, and P. Lindh. Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84:56–67, 2016. doi: 10.1016/j.measurement.2016.02.007.
[66] V. Lemenkov and P. Lemenkova. Measuring equivalent cohesion Ceq of the frozen soils by compression strength using kriolab equipment. Civil and Environmental Engineering Reports, 31(2):63–84, 2021. doi: 10.2478/ceer-2021-0020.
[67] X. Huang, R. Horn, and T. Ren. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma, 406:115452, 2022. doi: 10.1016/j.geoderma.2021.115452.
[68] W. Kongkitkul, T. Saisawang, P. Thitithavoranan, P. Kaewluan, and T. Posribink. Correlations between the surface stiffness evaluated by light-weight deflectometer and degree of compaction. In Geo-Shanghai 2014: Tunneling and Underground Construction, pages 65–75, 2014. doi: 10.1061/9780784413449.007.
[69] K. Lee, M. Prezzi, and N. Kim. Subgrade design parameters from samples prepared with different compaction methods. Journal of Transportation Engineering, 133(2):82–89, 2007. doi: 10.1061/ (ASCE)0733-947X(2007)133:2(82).
[70] M. Bryk. Resolving compactness index of pores and solid phase elements in sandy and silt loamy soils. Geoderma, 318:109–122, 2018. doi: 10.1016/j.geoderma.2017.12.030.
[71] W. l. Zou, Z. Han, S.K. Vanapalli, J.-F. Zhang, and G.-T. Zhao. Predicting volumetric behavior of compacted clays during compression. Applied Clay Science, 156:116–125, 2018. doi: 10.1016/j.clay.2018.01.036.
[72] S.J.Wasman, M.C. McVay, K. Beriswill, D. Bloomquist, J. Shoucair, and D. Horhota. Study of laboratory compaction system variance using an Automatic Proctor Calibration Device. Journal of Materials in Civil Engineering, 25(4):429–437, 2013. doi: 10.1061/(ASCE)MT.1943- 5533.0000599.
[73] L. Di Matteo, F. Bigotti, and R. Ricco. Best-fit models to estimate modified Proctor properties of compacted soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(7):992– 996, 2009. doi: 10.1061/(ASCE)GT.1943-5606.0000022.
[74] O. Boudlal and B. Melbouci. Study of the behavior of aggregates demolition by the Proctor and CBR tests. In GeoHunan International Conference 2009: Material Design, Construction, Maintenance, and Testing of Pavements, pages 75–80, 2009. doi: 10.1061/41045(352)12.
[75] L. Barden and G.R. Sides. Engineering behavior and structure of compacted clay. Journal of the Soil Mechanics and Foundations Division, 96(4):1171–1200, 1970. doi: 10.1061/JSFEAQ.0001434.
[76] M. Jibon and D. Mishra. Light weight deflectometer testing in Proctor molds to establish resilient modulus properties of fine-grained soils. Journal of Materials in Civil Engineering, 33(2):06020025, 2021. doi: 10.1061/(ASCE)MT.1943-5533.0003582.
[77] A. Aragón, M.G. García, R.R. Filgueira, and Ya.A. Pachepsky. Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content. Soil and Tillage Research, 56(3):197–204, 2000. doi: 10.1016/S0167-1987(00)00144-6.
[78] H. Bayat, S. Asghari, M. Rastgou, and G.R. Sheykhzadeh. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. CATENA, 189:104467, 2020. doi: 10.1016/j.catena.2020.104467.
[79] A.B.J.C. Nhantumbo and A.H. Cambule. Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil and Tillage Research, 87(2):231–239, 2006. doi: 10.1016/j.still.2005.04.001.
[80] A. Alaoui, J. Lipiec, and H.H. Gerke. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116:1–15, 2011. doi: 10.1016/j.still.2011.06.002.
[81] ASTM Standard D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken, PA, U. S., ICS Code: 93.020 edition, 2007. doi: 10.1520/D0698-07E01.
[82] ASTM Standard D1557. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International,West Conshohocken, PA, U. S., 2009. doi: 10.1520/D1557-09.
[83] L. Wang, X. Xie, and H. Luan. Influence of laboratory compaction methods on shear performance of graded crushed stone. Journal of Materials in Civil Engineering, 23(10):1483–1487, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000323.
[84] A. Alaoui and A. Helbling. Evaluation of soil compaction using hydrodynamic water content variation: Comparison between compacted and non-compacted soil. Geoderma, 134(1):97– 108, 2006. doi: 10.1016/j.geoderma.2005.08.016.
[85] M. Livneh and N.A. Livneh. Use of the one-point Proctor modified compaction method in family compaction curves possessing a limited trend characteristic. In Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, pages 1304–1315, 2013. doi: 10.1061/9780784413005.110.
[86] A.F. Elhakim. Estimation of soil permeability. Alexandria Engineering Journal, 55(3):2631– 2638, 2016. doi: 10.1016/j.aej.2016.07.034.
[87] Y. Yu, J.A. Huisman, A. Klotzsche, H. Vereecken, and L. Weihermüller. Coupled fullwaveform inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: A synthetic study. Journal of Hydrology, 610:127817, 2022. doi: 10.1016/j.jhydrol.2022.127817.
[88] J. Zhou, S. Laumann, and T.J. Heimovaara. Applying aluminum-organic matter precipitates to reduce soil permeability in-situ:Afield and modeling study. Science of The Total Environment, 662:99–109, 2019. doi: 10.1016/j.scitotenv.2019.01.109.
[89] A. Takai, T. Inui, and T. Katsumi. Evaluating the hydraulic barrier performance of soilbentonite cutoff walls using the piezocone penetration test. Soils and Foundations, 56(2):277– 290, 2016. doi: 10.1016/j.sandf.2016.02.010.
[90] Y.X. Lim, S.A. Tan, and K.-K. Phoon. Interpretation of horizontal permeability from piezocone dissipation tests in soft clays. Computers and Geotechnics, 107:189–200, 2019. doi: 10.1016/j.compgeo.2018.12.001.
[91] Y. Liu, S.J. Chen, K. Sagoe-Crentsil, andW. Duan. Predicting the permeability of consolidated silty clay via digital soil reconstruction. Computers and Geotechnics, 140:104468, 2021. doi: 10.1016/j.compgeo.2021.104468.
[92] T. Shibi and Y. Ohtsuka. Influence of applying overburden stress during curing on the unconfined compressive strength of cement-stabilized clay. Soils and Foundations, 61(4):1123–1131, 2021. doi: 10.1016/j.sandf.2021.03.007.
[93] N. Kardani, A. Zhou, S.-L. Shen, and M. Nazem. Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transportation Geotechnics, 29:100591, 2021. doi: 10.1016/j.trgeo.2021.100591.
[94] F. Mousavi, E. Abdi, S. Ghalandarayeshi, and D.S. Page-Dumroese. Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. CATENA, 196:104890, 2021. doi: 10.1016/j.catena.2020.104890.
[95] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[96] J.B. Burland. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329–378, 1990. doi: 10.1680/geot.1990.40.3.329.
[97] S.M. Rao and P. Shivananda. Compressibility behaviour of lime-stabilized clay. Geotechnical and Geological Engineering, 23:301–311, 2005. doi: 10.1007/s10706-004-1608-2.
[98] M. Al-Mukhtar, S. Khattab, and J.-F. Alcover. Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139-140:17–27, 2012. doi: 10.1016/j.enggeo.2012.04.004.
[99] A. al-Swaidani, I. Hammoud, and A. Meziab. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5):714–725, 2016. doi: 10.1016/j.jrmge.2016.04.002.
[100] C. Phetchuay, S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, and A. Udomchai. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Applied Clay Science, 127-128:134–142, 2016. doi: 10.1016/j.clay.2016.04.005.
[101] V. Lemenkov and P. Lemenkova. Testing deformation and compressive strength of the frozen fine-grained soils with changed porosity and density. Journal of Applied Engineering Sciences, 11(2):113–120, 2021. doi: 10.2478/jaes-2021-0015.
[102] V. Lemenkov and P. Lemenkova. Using TeX markup language for 3D and 2D geological plotting. Foundations of Computing and Decision Sciences, 46(3):43–69, 2021. doi: 10.2478/fcds-2021-0004.
[103] P.K. Robertson, S. Sasitharan, J.C. Cunning, and D.C. Sego. Shear-wave velocity to evaluate in-situ state of Ottawa sand. Journal of Geotechnical Engineering, 121(3):262–273, 1995. doi: 10.1061/(ASCE)0733-9410(1995)121:3(262).
[104] K. Komal, S. Bawa, and S. KantSharma. Laboratory investigation on the effect of polypropylene and nylon fiber on silt stabilized clay. Materials Today: Proceedings; International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering, 52:1368–1376, 2021. doi: 10.1016/j.matpr.2021.11.123.
[105] H. Källén, A. Heyden, and P. Lindh. Estimation of grain size in asphalt samples using digital image analysis. In Proceedings: Applications of Digital Image Processing XXXVII, volume 9217, pages 292–300, 2014. doi: 10.1117/12.2061730.
[106] Swedish Institute for Standards. SIS: Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017), 2017. ISO 17892- 7:2017.
[107] Swedish Institute for Standards. SIS: Earthworks – Part 4: Soil treatment with lime and/or hydraulic binders. online, 2018. SS-EN 16907-4:2018.
[108] Swedish Institute for Standards. Geotechnical investigation and testing - Laboratory testing of soil - Part 11: Permeability tests (ISO 17892-11:2019). online, 2019. Article no: STD- 80010356.
[109] BSI Standards Publication. Cement part 1: Composition, specifications and conformity criteria for common cements. European Standard (English version), 2011. BS EN 197-1:2011. ISBN: 978 0 580 68241 4.
[110] Thomas Concrete Group. Teknisk Information. Slagg Bremen Mald granulerad masugnsslagg för användning i betong och bruk enligt SS 137003. https://thomasconcretegroup.com/us/, 2014. Retrieved 2014-01-16 from Thomas Concrete Group.
[111] N.Ryden,U. Dahlen, P. Lindh, and A. Jakobsson. Impact non-linear reverberation spectroscopy applied to non-destructive testing of building materials. The Journal of the Acoustical Society of America, 140(4):3327–3327, 2016. doi: 10.1121/1.4970601.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Malmö, Sweden
  2. Lund University (Lunds Tekniska Högskola, LTH), Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

This study aims to optimize the 2-cylinder in-line reciprocating compressor crankshaft. As the crankshaft is considered the "bulkiest" component of the reciprocating compressor, its weight reduction is the focus of current research for improved performance and lower cost. Therefore, achieving a lightweight crankshaft without compromising the mechanical properties is the core objective of this study. Computational analysis for the crankshaft design optimization was performed in the following steps: kinematic analysis, static analysis, fatigue analysis, topology analysis, and dynamic modal analysis. Material retention by employing topology optimization resulted in a significant amount of weight reduction. A weight reduction of approximately 13% of the original crankshaft was achieved. At the same time, design optimization results demonstrate improvement in the mechanical properties due to better stress concentration and distribution on the crankshaft. In addition, material retention would also contribute to the material cost reduction of the crankshaft. The exact 3D model of the optimized crankshaft with complete design features is the main outcome of this research. The optimization and stress analysis methodology developed in this study can be used in broader fields such as reciprocating compressors/engines, structures, piping, and aerospace industries.
Go to article

Bibliography

[1] Z.P. Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers & Structures, 79(20-21):2009–2027, 2001. doi: 10.1016/S0045-7949(01)00119-5.
[2] A.P. Druschitz, D.C. Fitzgerald, and I. Hoegfeldt. Lightweight crankshafts. SAE Technical Paper 2006-01-0016, 2006. doi: 10.4271/2006-01-0016.
[3] K. Mizoue, Y. Kawahito, and K. Mizogawa. Development of hollow crankshaft. Honda R&D Technical Review 2009, pages 243–245, 2009.
[4] I. Papadimitriou and K. Track. Lightweight potential of crankshafts with hollow design. MTZ Worldwide, 79:42–45, 2018. doi: 10.1007/s38313-017-0140-8.
[5] M. Roeper and S. Reinsch. Hydroforging: a new manufacturing technology for forged lightweight products of aluminum. Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Manufacturing Engineering and Materials Handling, Parts A and B, pages 297-304. Orlando, Florida, USA, November 5–11, 2005. doi: 10.1115/IMECE2005-80424.
[6] J. Lampinen. Cam shape optimization by genetic algorithm. Computer-Aided Design, 35(8):727–737. doi: 10.1016/S0010-4485(03)00004-6.
[7] A. Albers, N. Leon, H. Aguayo, and T. Maier. Multi-objective system optimization of engine crankshafts using an integration approach. Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 14: New Developments in Simulation Methods and Software for Engineering Applications, pages 101–109. Boston, Massachusetts, USA. October 31–November 6, 2008. doi: 10.1115/IMECE2008-67447.
[8] J.P. Henry, J. Topolsky, and M. Abramczuk. Crankshaft durability prediction – a new 3-D approach. SAE Technical Paper 920087, 1992. doi: 10.4271/920087.
[9] M. Guagliano, A. Terranova, and L. Vergani. Theoretical and experimental study of the stress concentration factor in diesel engine crankshafts. Journal of Mechanical Design, 115(1):47–52, 1993. doi: 10.1115/1.2919323.
[10] A.C.C. Borges, L.C. Oliveira, and P.S. Neto. Stress distribution in a crankshaft crank using a geometrically restricted finite element model. SAE Technical Paper 2002-01-2183, 2002. doi: 10.4271/2002-01-2183.
[11] D. Taylor, W. Zhou, A.J. Ciepalowicz, and J. Devlukia. Mixed-mode fatigue from stress concentrations: an approach based on equivalent stress intensity. International Journal of Fatigue, 21(2):173–178, 1999. doi: 10.1016/S0142-1123(98)00066-8.
[12] W. Li, Q. Yan, and J. Xue. Analysis of a crankshaft fatigue failure. Engineering Failure Analysis, 55:13-9-147, 2015. doi: 10.1016/j.engfailanal.2015.05.013.
[13] R.M. Metkar, V.K. Sunnapwar, and S.D. Hiwase. Comparative evaluation of fatigue assessment techniques on a forged steel crankshaft of a single cylinder diesel engine. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, pages 601–609. Houston, Texas, USA, November 9–15, 2012. doi: 10.1115/IMECE2012-85493.
[14] Y. Shi, L. Dong, H.Wang, G. Li, and S. Liu. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission. Frontiers of Mechanical Engineering, 11(3):233–241, 2016. doi: 10.1007/s11465-016-0400-3.
[15] J. Yao and J. Zhang. A modal analysis for vehicle’s crankshaft. 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, pages 300–303, 2017. doi: 10.1109/ITOEC.2017.8122303.
[16] A.S. Mendes, E. Kanpolat, and R. Rauschen. Crankcase and crankshaft coupled structural analysis based on hybrid dynamic simulation. SAE International Journal of Engines, 6(4):2044– 2053, 2013. doi: 10.4271/2013-01-9047.
[17] B. Yu, Q. Feng, and X. Yu. Dynamic simulation and stress analysis for reciprocating compressor crankshaft. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(4):845–851, 2013. doi: 10.1177/0954406212453523.
[18] A. Arshad, S. Samarasinghe, M.A.F. Ameer, and A. Urbahs. A simplified design approach for high-speed wind tunnels. Part I: Table of inclination. Journal of Mechanical Science and Technology, 34(6):2455–2468, 2020. doi: 10.1007/s12206-020-0521-9.
[19] A. Arshad, S. Samarasinghe, and V. Kovalcuks. A simplified design approach for high-speed wind tunnels. Part-I.I: Optimized design of settling chamber and inlet nozzle. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 150–154, 2020. doi: 10.1109/ICMAE50897.2020.9178865.
[20] A. Arshad, M.A.F. Ameer, and O. Kovzels. A simplified design approach for high-speed wind tunnels. Part II: Diffuser optimization and complete duct design. Journal of Mechanical Science and Technology, 35(7):2949–2960, 2021. doi: 10.1007/s12206-021-0618-9.
[21] A. Arshad, N. Andrew, and I. Blumbergs. Computational study of noise reduction in CFM56-5B using core nozzle chevrons. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 162-167, 2020. doi: 10.1109/ICMAE50897.2020.9178891.
[22] A. Arshad, L.B. Rodrigues, and I.M. López. Design optimization and investigation of aerodynamic characteristics of low Reynolds number airfoils. International Journal of Aeronautical and Space Sciences, 22:751–764, 2021. doi: 10.1007/s42405-021-00362-2.
[23] A. Arshad, A.J. Kallungal and A.E.E.E. Elmenshawy. Stability analysis for a concept design of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV). 2021 International Conference on Military Technologies (ICMT), pages 1–6, 2021. doi: 10.1109/ICMT52455.2021.9502764.
[24] RanTong official database for the ZW-0.8/10-16 reciprocating compressor specifications, online resources.
[25] F. Rodriges Minucci, A.A. dos Santos, and R.A. Lime e Silva. Comparison of multiaxial fatigue criteria to evaluate the life of crankshafts. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 11: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 775–784. Vancouver, British Columbia, Canada. November 12–18, 2010. doi: 10.1115/IMECE2010-39018.
[26] Y.F. Sun, H.B. Qiu, L. Gao, K. Lin, and X.Z. Chu. Stochastic response surface method based on weighted regression and its application to fatigue reliability analysis of crankshaft. Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 13: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 263-268. Lake Buena Vista, Florida, USA. November 13–19, 2009. doi: 10.1115/IMECE2009-11095.
[27] Y. Gorash, T. Comlekci, and D.MacKenzie. Comparative study of FE-models and material data for fatigue life assessments of welded thin-walled cross-beam connections. Procedia Engineering, 133:420–432, 2015. doi: 10.1016/j.proeng.2015.12.612.
[28] C. Cevik and E. Kanpolat. Achieving optimum crankshaft design – I. SAE Technical Paper 2014-01-0930, 2014. doi: 10.4271/2014-01-0930.
[29] G. Mu, F.Wang, and X. Mi. Optimum design on structural parameters of reciprocating refrigeration compressor crankshaft. Proceedings of the 2016 International Congress on Computation Algorithms in Engineering, pages 281–286, 2016. doi: 10.12783/dtcse/iccae2016/7204.
Go to article

Authors and Affiliations

Ali Arshad
1
ORCID: ORCID
Pengbo Cong
2
Adham Awad Elsayed Elmenshawy
1
Ilmārs Blumbergs
1
ORCID: ORCID

  1. Institute of Aeronautics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia
  2. Institute of Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia
Download PDF Download RIS Download Bibtex

Abstract

The article describes motion planning of an underwater redundant manipulator with revolute joints moving in a plane under gravity and in the presence of obstacles. The proposed motion planning algorithm is based on minimization of the total energy in overcoming the hydrodynamic as well as dynamic forces acting on the manipulator while moving underwater and at the same time, avoiding both singularities and obstacle. The obstacle is considered as a point object. A recursive Lagrangian dynamics algorithm is formulated for the planar geometry to evaluate joint torques during the motion of serial link redundant manipulator fully submerged underwater. In turn the energy consumed in following a task trajectory is computed. The presence of redundancy in joint space of the manipulator facilitates selecting the optimal sequence of configurations as well as the required joint motion rates with minimum energy consumed among all possible configurations and rates. The effectiveness of the proposed motion planning algorithm is shown by applying it on a 3 degrees-of-freedom planar redundant manipulator fully submerged underwater and avoiding a point obstacle. The results establish that energy spent against overcoming loading resulted from hydrodynamic interactions majorly decides the optimal trajectory to follow in accomplishing an underwater task.
Go to article

Bibliography

[1] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System, 10(2):47–53,1969. doi: 10.1109/TMMS.1969.299896.
[2] Z. Shiller and H-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40,1992. doi: 10.1115/1.2896505.
[3] N. Faiz and S.K. Agrawal.Trajectory planning of robots with dynamics and inequalities. In Proceedings IEEE International Conference on Robotics and Automation, pages 3976–3982, 2000. doi: 10.1109/ROBOT.2000.845351.
[4] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: design for realtime applications. IEEE Transactions on Robotics and Automation, 19(1):42–52, 2003. doi: 10.1109/TRA.2002.807548.
[5] G. Antonelli, S. Chiaverini, and N. Sarkar. External force control for underwater vehiclemanipulator systems. IEEE Transactions on Robotics and Automation, 17(6):931–938, 2001. doi: 10.1109/70.976027.
[6] D. Yoerger and J. Slotine. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4):462–470, 1985. doi: 10.1109/JOE.1985.1145131.
[7] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004. doi: 10.1109/JOE.2004.827837.
[8] N. Sarkar and T.K. Podder. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE Journal of Oceanic Engineering, 26(2):228–239, 2001. doi: 10.1109/48.922789.
[9] J. Yuh. Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6):1475–1483, 1990. doi: 10.1109/21.61218.
[10] B. Lévesque and M.J. Richard. Dynamic analysis of a manipulator in a fluid environment. International Journal of Robotics Research, 13(3):221–231, 1994. doi: 10.1177/027836499401300304.
[11] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley, New York, 1994.
[12] G. Antonelli. Underwater Robots. 2nd ed. Springer, 2006.
[13] T.J. Tarn, G.A. Shoults, and S.P. Yang. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3:269–283, 1996. doi: 10.1007/BF00141159.
[14] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):730–736, 1980. doi: 10.1109/TSMC.1980.4308393.
[15] J.N. Newman. Marine Hydrodynamics. 40th Anniversary Edition. The MIT Press, 2018.
[16] A. Kumar, V. Kumar, and S. Sen. Dynamics of underwater manipulator: a recursive Lagrangian formulation. In R. Kumar, V.S. Chauhan, M. Talha, H. Pathak (Eds.), Machines, Mechanism and Robotics, Lecture Notes in Mechanical Engineering, pages 555–570. Springer, Singapure, 2022. doi: 10.1007/978-981-16-0550-5_56.
[17] A.K. Sharma and S.K. Saha. Simplified drag modeling for the dynamics of an underwater manipulator. IEEE Journal of Ocean Engineering, 46(1):40–55, 2021. doi: 10.1109/JOE.2019.2948412.
[18] R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots using configuration control. Journal of Robotics Systems, 6(6):721–744,1989. doi: 10.1002/rob.4620060605.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Soumen Sen
1
Shibendu Shekhar Roy
2

  1. Robotics and Automation Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
  2. Mechanical Engineering Department, National Institute of Technology, Durgapur, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of the impact of inertial forces of the electrolyte flow in an interelectrode gap on the effects of ECM process of curvilinear rotary surfaces. Considering a laminar flow in the interelectrode gap, the equations of the flow of the mixture of electrolyte and hydrogen in the curvilinear orthogonal coordinate system have been defined. Two classes of equations of motion have been formulated, which differ in the estimates referred to the components of velocity and pressure, and which were analytically solved using the method of perturbation.
Using the machined surface shape evolution equation, the energy equation, and the analytical solutions for velocity and pressure, the ECM-characteristic distributions have been determined: of mean velocity, pressure, mean temperature, current density, gas phase concentration, the gap height after the set machining time for the case when there is no influence of inertial forces, the effect of centrifugal forces and, at the same time, centrifugal and longitudinal inertial forces.
Go to article

Bibliography

[1] G. Chrysslouris, M. Wollowitz, and N.P. Sun. Electrochemical hole making. Annals CIRP, 33(1):99–104, 1984. doi: 10.1016/S0007-8506(07)61388-2.
[2] M. Datta and L.T. Romankiw. Application of chemical and electrochemical micromachining in the electronics industry. Journal of Electrochemical Society, 136(6):285–292, 1989. doi: 10.1149/1.2097055.
[3] A. Ruszaj. Electrochemical machining – state of the art and direction of development. Mechanik, 90(12):1102–1109, 2017. doi: 10.17814/mechanik.2017.12.188.
[4] A. Ruszaj, J. Gawlik, and S. Skoczypiec. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review, 7(2):34–41, 2016. doi: 10.1515/mper-2016-0015.
[5] K.P. Rajurkar, M.M. Sundaram,and A.P. Malshe. Review of electrochemical and electro discharge machining. Procedia CIRP, 6:13–26, 2013. doi: 10.1016/j.procir.2013.03.002.
[6] J. Bannard. Electrochemical machining. Journal of Applied Electrochemistry, 7:1–29, 1977. doi: 10.1007/BF00615526.
[7] J.A. McGeough. Principles of Electrochemical Machining. Chapman and Hall, London, 1974.
[8] J.A. McGeough and H. Rasmussen. Theoretical analysis of the electroforming process. Journal Mechanical Engineering Science, 23(3):113–120, 1981. doi: 10.1243/JMES_JOUR_1981_023_024_02.
[9] H.S.J. Altena. Precision ECM by process characteristic modelling. Ph.D. Thesis, Glasgow Caledonian University. 2000.
[10] A. Budzyński and S. Seroka. Studies of unidirectional longitudinal electrochemical honing. Conference Materials EM-82, Bydgoszcz, Poland, pages 152–161, 1982. (in Polish).
[11] L. Dąbrowski. Basics of Computer Simulation of Electrochemical Forming. Scientific Works, Mechanics 154, Publisher of Warsaw University of Technology. 1992. (in Polish).
[12] J. Kozak and M. Zybura-Skrabalak. Some problems of surface roughness in electrochemical machining Procedia CIRP, 42:101–106, 2016. doi: 10.1016/j.procir.2016.02.198.
[13] K. Łubkowski, L. Dąbrowski, J. Kozak, and M. Rozenek. Electrochemical machine tools for surface smoothing and deburring. Conference Materials EM-90, Bydgoszcz, Poland, pages 78-86, 1990. (in Polish).
[14] X. Wang, H. Li, and S. Niu. Simulation and experimental research into combined electrochemical milling and electrochemical grinding machining of Ti40 titanium alloy. International Journal Electrochemical Science, 15:11150–11167, 2020. doi: 10.20964/2020.11.09.
[15] M. Singh and S. Singh. Electrochemical discharge machining: A review on preceding and perspective research. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5):1425–1449, 2019. doi: 10.1177/0954405418798865.
[16] J.F. Wilson. Practice and Theory of Electrochemical Machining. Wiley, New York, 1971.
[17] J. Kozak. Mathematical models for computer simulation of electrochemical machining processes. Journal of Materials Processing Technology, 76(1-3):170-175, 1998. doi: 10.1016/S0924-0136(97)00333-6.
[18] J. Sawicki. ECM machining of curvilinear rotary surfaces by a shaping tool electrode performing composite motion. Advances in Manufacturing Science and Technology, 34(2):79–92, 2010.
[19] A.D. Davydov, V.M. Volgin, and V.V. Lyubimov. Electrochemical machining of metals: fundamentals of electrochemical shaping. Russian Journal of Electrochemistry, 40(12):1230–1265, 2004. doi: 10.1007/s11175-005-0002-6.
[20] J. Sawicki and T. Paczkowski. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining. EPJ Web of Conferences, 92:02078, 2015. doi: 10.1051/epjconf/20159202078.
[21] C.F. Noble. Studies in Electrochemical Machining. PhD Thesis. University of Manchester, UK, 1976.
[22] H. Demitras, O. Yilmaz, and B. Kanber. Controlling short circuiting, oxide layer and cavitation problems in electrochemical machining of freeform surfaces. Journal of Materials Processing Technology, 262:585–596, 2018. doi: 10.1016/j.jmatprotec.2018.07.029.
[23] T. Paczkowski and J. Sawicki. Electrochemical machining of curvilinear surfaces. Machining Science and Technology, 12(1):33–52, 2008. doi: 10.1080/10910340701881433.
[24] T. Paczkowski and J. Zdrojewski. The mechanism of ECM technology design for curvilinear surfaces. Procedia CIRP, 42:356–361, 2016. doi: 10.1016/j.procir.2016.02.195.
[25] J. Sawicki. ECM machining of curvilinear rotary surfaces. Journal of Polish CIMAC. 5(3):88–98, 2010.
[26] J. Sawicki. Analysis and Modeling of Electrochemical Machining of Curvilinear Rotary Surfaces. University Publisher. UTP University of Science and Technology, Poznan, Poland, 2013.
[27] E.I. Filatov. The numerical simulation of the unsteady ECM process. Journal of Materials Processing Technology, 109(3):327–332, 2001. doi: 10.1016/S0924-0136(00)00817-7.
[28] C. Zhang, Z. Xu, Y. Hang, and J. Xing. Effect of solution conductivity on tool electrode wear in electrochemical discharge drilling of nickel-based alloy. The International Journal of Advanced Manufacturing Technology, 103:743–756, 2019. doi: 10.1007/s00170-019-03492-w.
[29] M. Chai, Z. Li, X. Song, J. Ren, and Q. Cui. Optimization and simulation of electrochemical machining of cooling holes on high temperature nickel-based alloy. International Journal Electrochemical Science, 16:210912, 2021. doi: 10.20964/2021.09.35.
[30] D. Mi and W. Natsu. Proposal of ECM method for holes with complex internal features by controlling conductive area ratio along tool electrode. Precision Engineering, 42:179–186, 2015. doi: 10.1016/j.precisioneng.2015.04.015.
[31] D. Zhu, R. Zhang, and C. Liu. Flow field improvement by optimizing turning profile at electrolyte inlet in electrochemical machining. International Journal of Precision Engineering and Manufacturing, 18(1):15–22, 2017. doi: 10.1007/s12541-017-0002-y.
[32] J. Kozak. Surface Shaping Contactless Electrochemical Machining. Scientific Works, Mechanics 41, Publisher of Warsaw University of Technology. 1976. (in Polish).
[33] Łubkowski K. Critical States in Electrochemical Machining. Scientific Works, Mechanics 163, Publisher of Warsaw University of Technology, 1996. (in Polish).
Go to article

Authors and Affiliations

Jerzy Sawicki
1
ORCID: ORCID
Tomasz Paczkowski
2
ORCID: ORCID
Jarosław Zdrojewski
3
ORCID: ORCID

  1. Department of Mechanics and Computer Methods, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
  2. Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
  3. Department of Digital Technology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland

This page uses 'cookies'. Learn more