Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 20840
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the author presents experimental analysis of propagation of plastic zones in two-dimensional models with different stress concentrators. The experimental tests were carried out by photoelastic coating method on duralumin stripes loaded by tensile stresses. For various levels of loading, the photographs of isochromatic pattern were taken under loading and after removing loading. On the basis of isochromatic pattern recorded for loaded models, the boundaries of plastic zones were determined using the Treska-Coulomb yield condition. The isochromatic pattern taken for the unloaded, but previously partly plastified elements, show the picture of the residual strain remaining in the material. A discussion of the results is presented.

Go to article

Authors and Affiliations

Barbara Kozłowska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors investigate a cylindrical shell reinforced by carbon nanotubes. The critical buckling load is calculated using analytical method when it is subjected to compressive axial load. The Mori-Tanaka method is firstly utilized to estimate the effective elastic modulus of composites having aligned oriented straight CNTs. The eigenvalues of the problem are obtained by means of an analytical approach based on the optimized Rayleigh-Ritz method. There is presented a study on the effects of CNTs volume fraction, thickness and aspect ratio of the shell, CNTs orientation angle, and the type of supports on the buckling load of cylindrical shells. Furthermore the effect of CNTs agglomeration is investigated when CNTs are dispersed none uniformly in the polymer matrix. It is shown that when the CNTs are arranged in 90 degrees direction, the highest critical buckling load appears. Also, the results are plotted for different longitudinal and circumferential mode numbers. There is a specific value for aspect ratio of the cylinder that minimizes the buckling load. The results reveal that for very low CNTs volume fractions, the volume fraction of inclusions has no important effect on the critical buckling load.

Go to article

Authors and Affiliations

Jafar Eskandari Jam
Esmail Asadi
Download PDF Download RIS Download Bibtex

Abstract

Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%.
Go to article

Bibliography

[1] Z. Taha and N.T. Dung. Rolling element bearing fault detection with a single point defect on the outer raceway using finite element analysis. The 11th Asia Pacific Industrial Engineering and Management Systems Conference and the 14th Asia Pacific Regional Meeting of International Foundation for Production Research, Melaka, Malaysia, 7-10 Dec. 2010.
[2] P. Jayaswal, S.N. Verma, and A.K. Wadhwani. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis. Journal of Vibration and Control, 17(8):1131–1148, 2011. doi: 10.1177/1077546310361858.
[3] V.V. Rao and Ch. Ratnam. A comparative experimental study on identification of defect severity in rolling element bearings using acoustic emission and vibration analysis. Tribology in Industry, 37(2):176–185, 2015.
[4] S. Shah and A. Guha. Bearing health monitoring. Tribology in Industry, 38(3):297–307, 2016.
[5] C. Ratnam, N.M. Jasmin, V.V. Rao, and K.V. Rao. A comparative experimental study on fault diagnosis of rolling element bearing using acoustic emission and soft computing techniques. Tribology in Industry, 40(3):501–513, 2018. doi: 10.24874/ti.2018.40.03.15.
[6] K. Kappaganthu and C. Nataraj. Modelling and analysis of outer race defects in rolling element bearings. Advances in Vibration Engineering, 11(4):371–384, 2012.
[7] P.K. Kankar, S.C. Sharma, and S.P. Harsha. Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing, 11(2):2300–2312, 2011. doi: 10.1016/j.asoc.2010.08.011.
[8] A. Sharma, M. Amarnath, and P.K. Kankar. Feature extraction and fault severity classification in ball bearings. Journal of Vibration and Control, 22(1):176–192, 2014. doi: 10.1177/1077546314528021.
[9] V. Hariharan and P.S.S. Srinivasan. Vibration analysis of parallel misaligned shaft with ball bearing system. Sonklanakarin Journal of Science and Technology, 33(1):61–68, 2011.
[10] J.D. Wu and C.H. Liu. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network. Expert Systems with Applications, 36(3):4278–4286, 2009. doi: 10.1016/j.eswa.2008.03.008.
[11] J.S. Rapur and R.Tiwari. Experimental fault diagnosis for known and unseen operating conditions of centrifugal pumps using MSVM and WPT based analyses. Measurement, 147:106809, 2019. doi: 10.1016/j.measurement.2019.07.037.
[12] C. Cortes and V. Vapnik. Support vector network. Machine Learning, 20(3):273–297, 1995. doi: 10.1007/BF00994018.
[13] S. Damuluri, K. Islam, P. Ahmadi, and N.S. Qureshi. Analyzing navigational data and predicting student grades using support vector machine. Emerging Science Journal, 4(4):243–252, 2020. doi: 10.28991/esj-2020-01227.
[14] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, 2017. doi: 10.1201/9781315230962.
[15] V.C. Handikherkar and V.M. Phalle. Gear fault detection using machine learning techniques -- A simulation-driven approach. International Journal of Engineering, 34(1):212–223, 2021. doi: 10.5829/IJE.2021.34.01A.24.
[16] S. Patil and V. Phalle. Fault detection of anti-friction bearing using ensemble machine learning methods. International Journal of Engineering, 31(11):1972–1981, 2018.
[17] A.S. Minhas, G. Singh, J. Singh, P.K. Kankarand, and S. Singh. A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy. Measurement,154:107441, 2020. doi: 10.1016/j.measurement.2019.107441.
[18] www.mfpt.org
Go to article

Authors and Affiliations

Pallavi Khaire
1 2
ORCID: ORCID
Vikas Phalle
1

  1. Veermata Jijabai Technological Institute, Mumbai, India
  2. Fr. C. Rodrigues Institute of Technology, Navi Mumbai, India
Download PDF Download RIS Download Bibtex

Abstract

Purpose: The influence of age-hardening solution treatment at temperature 515 degrees centigrade with holding time 4 hours, water quenching at 40 degrees centigrade and artificial aging by different temperature 130, 150, 170 and 210 degrees centigrade with different holding time 2, 4, 8, 16 and 32 hours on changes in morphology of Fe-rich Al15(FeMn)3Si2and Cu-rich (Al2Cu, Al-Al2Cu-Si) intermetallic phases in recycled AlSi9Cu3 cast alloy. Material/Methods: Recycled (secondary) AlSi9Cu3 cast alloy is used especially in automotive industry (dynamic exposed cast, engine parts, cylinder heads, pistons and so on). Microstructure was observed using a combination of different analytical techniques (scanning electron microscopy upon standard and deep etching and energy dispersive X-ray analysis – EDX) which have been used for the identification of the various phases. Quantitative study of changes in morphology of phases was carried out using Image Analyzer software NIS-Elements. The mechanical properties (Brinell hardness and tensile strength) were measured in line with STN EN ISO. Results/Conclusion: Age-hardening led to changes in microstructure include the spheroidization of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases and Al-Al2Cu-Si phases were fragmented, dissolved and redistributed within alpha-matrix. These changes led to increase in the hardness and tensile strength in the alloy.

Go to article

Authors and Affiliations

Lenka Hurtalová
Eva Tillová
Mária Chalupová
Download PDF Download RIS Download Bibtex

Abstract

To reduce the recoil and improve the stability of small arms, a muzzle brake compensator is attached to the muzzle of the barrel. This device uses the kinetic energy of the powder gas escaping from the bore after the bullet is fired. In this paper, the authors present the determination of the thermo-gas-dynamic model of the operation of a muzzle brake compensator and an example of calculating this type of muzzle device for the AK assault rifle using 7.62x39 mm ammunition. The results of the calculation allowed for obtaining the parameters of the powder gas flow in the process of flowing out of the muzzle device, as well as the change in the momentum of the powder gas's impact on the muzzle device. The model proposed in the article provides the basis for a quantitative evaluation of the effectiveness of using the muzzle device in stabilizing infantry weapons when firing.
Go to article

Bibliography

[1] V.V. Alferov. Design and Calculation of Automatic Weapons. Moscow, Mechanical Engineering, 1977 (in Russian).
[2] M. Stiavnicky and P. Lisy. Influence of barrel vibration on the barrel muzzle position at the moment when bullet exits barrel. Advances in Military Technology, 8(1):89–102, 2013.
[3] D.M. Hung. Study on the dynamics of the AGS-17 30mm grenade launcher and the effect of some structural factors on gun stability when fired. PhD Thesis, Military Technical Academy, Hanoi, 2016 (in Vietnamese).
[4] J. Balla. Contribution to determining of load generated by shooting from automatic weapons. International Conference on Military Technologies (ICMT), pages 1–6, Brno, Czech Republic, 30-31 May 2019. doi: 10.1109/MILTECHS.2019.8870116.
[5] V.B. Vo, J. Balla, H.M. Dao, H.T. Truong, D.V. Nguyen, and T.V. Tran. Firing stability of automatic grenade launcher mounted on tripod. International Conference on Military Technologies (ICMT), pages 1–8, Brno, Czech Republic, August 2021. doi: 10.1109/ICMT52455.2021.9502836.
[6] M. Macko, B.V. Vo, and Q.A. Mai. Dynamics of short recoil-operated weapon. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(3):9–26, 2021. doi: 10.5604/01.3001.0015.2432.
[7] N.T. Dung, N.V. Dung, T.V. Phuc, and D.D. Linh. biomechanical analysis of the shooter-weapon system oscillation. International Conference on Military Technologies (ICMT), Brno, Czech Republic, pages 48–53, 2017. doi: 10.1109/MILTECHS.2017.7988729.
[8] V.B. Vo, M. Macko, and H.M. Dao. Experimental study of automatic weapon vibrations when burst firing. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(4):9–28, 2012. doi: 10.5604/01.3001.0015.5984.
[9] T.D. Van, T.L. Minh, D.N. Thai, D.T. Cong, and P.V. Minh. The application of the design of the experiment to investigate the stability of special equipment. Mathematical Problems in Engineering, 2022: 8562602, 2022. doi: 10.1155/2022/8562602.
[10] Instructions on shooting. Gun shooting basics. 7.62 mm Modernized Kalashnikov assault rifle (AKM and AKMS), 7.62 mm Kalashnikov light machine gun (RPK and RPKS), 7.62 mm Kalashnikov machine gun (PK, PKS, PKB and PKT), 9 mm Makarov pistol. Hand grenades. Military Publishing House of the USSR Ministry of Defense, 1973 (in Russian).
[11] D.N. Zhukov, V.V. Chernov, and M.V. Zharkov. Development of an algorithm for calculating muzzle devices in the CFD package, Fundamentals of ballistic design. All-Russian Scientific and Technical Conference, St. Petersburg, pages 126-129, 2012. (in Russian).
[12] R. Cayzac, E. Carette, and T. Alziary de Roquefort. 3D unsteady intermediate ballistics modelling: Muzzle brake and sabot separation, In Proceedings of the 24th International Symposium on Ballistics, New Orleans, LA, USA, pages 423–430, 2008.
[13] J.S. Li, M. Qiu, Z.Q. Liao, D.P. Xian, and J. Song. Dynamic modeling and simulation of Gatling gun with muzzle assistant-rotating and recoil absorber. Acta Armamentarii, 35(9):1344–1349, 2014. doi: 10.3969/j.issn.1000-1093.2014.09.003.
[14] N.A. Konovalov, O.V. Pilipenko, Yu.A. Kvasha, G.A. Polyakov, A.D. Skorik, and V.I. Kovalenko. On thermo-gas-dynamic processes in devices for reducing the sound level of a small arms shot. Technical Mechanics, pp. 69-81, 2011 (in Russian).
[15] E.N. Patrikov. Mathematical modeling of the functioning process of service weapons in the mode of non-lethal action. Technical Sciences, News of TulGU, pp. 33-39, 2012 (in Russian).
[16] X.Y. Zhao, K.D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake. Shock and Vibration, 2019: 5938034, 2019. doi: 10.1155/2019/5938034.
[17] P.F. Li and X.B. Zhang. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion. Defence Technology, 17(4):1178–1189, 2021. doi: 10.1016/j.dt.2020.06.019.
[18] H.H. Zhang, Z.H. Chen, X.H. Jiang, and H.Zh. Li. Investigations on the exterior flow field and the efficiency of the muzzle brake. Journal of Mechanical Science and Technology, 27: 95–101, 2013. doi: 10.1007/s12206-012-1223-8.
[19] I. Semenov, P. Utkin, I. Akhmedyanov, I. Menshov, and P. Pasynkov. Numerical investigation of near-muzzle blast levels for perforated muzzle brake using high performance computing. International Conference "Parallel and Distributed Computing Systems" PDCS 2013, pages 281–289, Ukraine, Kharkiv, March 13-14, 2013. (in Russian).
[20] S.Q. Uong. Investigating the effect of gas compensator combined with brake device on the stability of automatic hand-held weapons when firing in series by experiment. Military Technical and Technological Science Research, 23:80–83, 2008. (in Vietnamese).
[21] L.E. Mikhailov. Designs of Small Automatic Arms Weapons. Central Research Institute of Information, USSR, 1984. (in Russian).
[22] Theory and Calculation of Automatic Weapons. V.M. Kirillov (editor). Penza: PVAIU, 1973. (in Russian).
[23] V.I. Kulagin and V.I. Cherezov. Gas Dynamics of Automatic Weapons. Central Research Institute of Information, USSR, 1985. (in Russian).
[24] Yu.P. Platonov. Thermo-gas-dynamics of Automatic Weapons. Mechanical Engineering, USSR, 2009. (in Russian).
[25] M.I. Gurevich. Theory of Jets of an Ideal Fluid. Fizmatgiz, USSR, 1961. (in Russian).
[26] Guiding Technical Material, Small Arms, Methods of Thermo-Gas-Dynamic Calculations. RTM-611-74, 1975. (in Russian).
Go to article

Authors and Affiliations

Dung Van Nguyen
1
ORCID: ORCID
Viet Quy Bui
1
ORCID: ORCID
Dung Thai Nguyen
1
ORCID: ORCID
Quyen Si Uong
1
ORCID: ORCID
Hieu Tu Truong
1
ORCID: ORCID

  1. Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a solution of the control system for fatigue test stand MZGS-100 PL, comprising the integrated Real-Time controller based on FPGA (Field-Programmable Gate Array) technology with LabVIEW software. The described control system performs functions such as continuous regulation of speed induction motor, measuring strain of the lever machine and the test specimen, displacement of the polyharmonic vibrator, as well as the elimination of interferences, overload protection and emergency stop of the machine. The fatigue test stand also allows to set the pseudo-random history of energy parameter W(t).

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Wojciech Macek
Ewald Macha

Download PDF Download RIS Download Bibtex

Abstract

The paper shows the hybrid method of stress and strain distributions analysis. In the method, the results of displacement measurement were used as boundary conditions in the numerical analysis of the tested objects. The numerical analysis was performed with the use of the finite element method (FEM), whereas measurements of displacement were made by laser grating interferometry technique (moire interferometry). Examples of tests presented in the paper show good efficiency of the method in the analysis of stress and strain distribution in the areas of their heterogeneous distribution. Mutual completion of laser grating interferometry and finite element method makes it possible to exclude their disadvantages creating broader' possibilities for research impossible to achieve in separate use.
Go to article

Authors and Affiliations

Dariusz Boroński
Download PDF Download RIS Download Bibtex

Abstract

The rigid finite element method (RFEM) has been used mainly for modelling systems with beam-like links. This paper deals with modelling of a single set of electrodes consisting of an upper beam with electrodes, which are shells with complicated shapes, and an anvil beam. Discretisation of the whole system, both the beams and the electrodes, is carried out by means of the rigid finite element method. The results of calculations concerned with free vibrations of the plates are compared with those obtained from a commercial package of the finite element method (FEM), while forced vibrations of the set of electrodes are compared with those obtained by means of the hybrid finite element method (HFEM) and experimental measurements obtained on a special test stand.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Iwona Adamiec-Wójcik
Andrzej Nowak
Stanisław Wojciech

Download PDF Download RIS Download Bibtex

Abstract

The paper presents kinetic fatigue crack growth curve for IOHNAP steel, which is verified experimentally. An energy approach based on the M-integral range is shown. The tests have been carried out on plane specimens With notches under tension-compression for three values of stress ratio R. The J-integral is calculated analytically and by the finite element method. A relationship for the description of the whole kinetic crack growth curve including J-integral is presented. It is shown that at the constant loading and the change of stress ratio R from - 1 to O the fatigue crack growth rate increases. A relationship is proposed in the paper for description of the kinetic crack growth curve. It gives results that are consistent with experimental ones and those obtained with the use of the finite element method (FEM).
Go to article

Authors and Affiliations

Dariusz Rozumek
Download PDF Download RIS Download Bibtex

Abstract

The present theoretical study is concerned with the analysis of surface roughness effects on the steady-state performance of stepped circular hydrostatic thrust bearings lubricated with non-Newtonian fluids: Rabinowitsch fluid model. To take the effects of surface roughness into account, Christensen’s theory for rough surfaces has been adopted. The expression for pressure gradient has been derived in stochastic form employing the energy integral approach. Results for stochastic film pressure and load-carrying capacity have been plotted and analyzed based on numerical results. Due to surface roughness, significant variations in the theoretical results of these properties have been observed.
Go to article

Bibliography

[1] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54(5):723-729, 2011. doi: 10.1080/10402004.2011.597541.
[2] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing. Tribology International, 58:65-70, 2013. doi: 10.1016/j.triboint.2012.09.014.
[3] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of Tribology, 134(4):044502, 2012. doi: 10.1115/1.4007350.
[4] B.J. Hamrock, S.R. Schmid, and B.O. Jacobson. Fundamentals of Fluid Film Lubrication. CRC Press, 2004. doi: 10.1201/9780203021187.
[5] R. Bassani and P. Piccigallo. Hydrostatic Lubrication, Elsevier, 1992.
[6] J.A. Coombs and D. Dowson. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 179(10):96-114, 1964. doi: 10.1243/PIME_CONF_1964_179_270_02.
[7] J. Peterson, W.E. Finn, and D.W. Dareing. Non-Newtonian temperature and pressure effects of a lubricant slurry in rotating hydrostatic step bearing. Tribology Transactions, 37(4):857-863, 1994. doi: 10.1080/10402009408983369.
[8] V.K. Kapur and K. Verma. The simultaneous effects of inertia and temperature on the performance of a hydrostatic thrust bearing. Wear, 54(1):113-122, 1979. doi: 10.1016/0043-1648(79)90050-4.
[9] P. Singh, B.D. Gupta, and V.K. Kapur. Design criteria for stepped thrust bearings. Wear, 89(1):41-55, 1983. doi: 10.1016/0043-1648(83)90213-2.
[10] S.C. Sharma, S.C. Jain, and D.K. Bharuka. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6):347-356, 2002. doi: 10.1016/S0301-679X(02)00013-0.
[11] Z. Tian, H. Cao, and Y. Huang. Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1):188-193, 2019. doi: 10.1177/1350650118773944.
[12] Y.K. Younes. A revised design of circular hydrostatic bearings for optimal pumping power. Tribology International, 26(3):195-200, 1993. doi: 10.1016/0301-679X(93)90093-G.
[13] O.J. Bakker and R.A.J. van Ostayen. Recess depth optimization for rotating, annular, and circular recess hydrostatic thrust bearings. Journal of Tribology, 132(1):011103, 2010. doi: 10.1115/1.4000545.
[14] H. Sawano, Y. Nakamura, H. Yoshioka, and H. Shinno. High performance hydrostatic bearing using a variable inherent restrictor with a thin metal plate. Precision Engineering, 41:78-85, 2015. doi: 10.1016/j.precisioneng.2015.02.001.
[15] J.S. Yadav and V.K. Kapur. On the viscosity variation with temperature and pressure in thrust bearing. International Journal of Engineering Science, 19(2):269-77, 1981. doi: 10.1016/0020-7225(81)90027-6.
[16] P. Zhicheng, S. Jingwu, Z. Wenjie, L. Qingming, and C. Wei. The dynamic characteristics of hydrostatic bearings. Wear, 166(2):215-220, 1993. doi: 10.1016/0043-1648(93)90264-M.
[17] J.R. Lin. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology International, 32(4):207-216, 1999. doi: 10.1016/S0301-679X(99)00034-1.
[18] H. Christensen. Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(1):1013-1026, 1969. doi: 10.1243/PIME_ PROC_1969_184_074_02.
[19] J. Prakash and K. Tiwari. Effect of surface roughness on the squeeze film between rotating porous annular discs with arbitrary porous wall thickness. International Journal of Mechanical Sciences, 27(3):135-144, 1985. doi: 10.1016/0020-7403(85)90054-2.
[20] P. Singh, B.D. Gupta, and V.K. Kapur. Optimization of corrugated thrust bearing characteristics. Wear, 167(2):109-120, 1993. doi: 10.1016/0043-1648(93)90315-D.
[21] J.R. Lin. Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. International Journal of Machine Tools and Manufacture, 40(11):1671-1689, 2000. doi: 10.1016/S0890-6955(00)00012-2.
[22] A.W. Yacout. The surfacse roughness effect on the hydrostatic thrust spherical bearings performance: Part 3 of 5 - Recessed clearance type of bearings. In Proceedings of the ASME International Mechanical Enginering Congress and Exposition, Volume 9: Mechanical Systems and Control, Parts A, B, and C, pages 431-447, Seattle, Washington, USA, November 11-15, 2007. doi: 10.1115/IMECE2007-41013.
[23] Y. Xuebing, X. Wanli, L. Lang, and H. Zhiquan. Analysis of the combined effect of the surface roughness and inertia on the performance of high-speed hydrostatic thrust bearing. In: Luo J., Meng Y., Shao T., Zhao Q. (eds): Advanced Tribology, 197-201, Springer, 2009. doi: 10.1007/978-3-642-03653-8_66.
[24] A. Walicka, E. Walicki, P. Jurczak, and J. Falicki. Thrust bearing with rough surfaces lubricated by an Ellis fluid. International Journal of Applied Mechanics and Engineering, 19(4):809-822, 2014. doi: 10.2478/ijame-2014-0056.
[25] V.K. Stokes. Couple stress in fluids. The Physics of Fluids, 9(9):1709-1715, 1966. doi: 10.1063/1.1761925.
[26] S. Wada and H. Hayashi. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 2, Experimental studies. Bulletin of JSME, 14(69):279-286, 1971. doi: 10.1299/jsme1958.14.279.
[27] H.A. Spikes. The behaviour of lubricants in contacts: current understanding and future possibilities. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 208(1):3-15, 1994. doi: 10.1243/PIME_PROC_1994_208_345_02.
[28] P. Bourging and B. Gay. Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-Newtonian lubricant. Journal of Tribology, 106(2):285-290, 1984. doi: 10.1115/1.3260906.
[29] H. Hayashi and S. Wada. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 3, Theoretical analysis considering effects of correlation. Bulletin of JSME, 17(109):967-974, 1974. doi: 10.1299/jsme1958.17.967.
[30] H. Hashimoto and S. Wada. The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudo-plastic fluids. Journal of Tribology, 108(2):282-287, 1986. doi: 10.1115/1.3261177.
[31] J.-R. Lin. Non-Newtonian effects on the dynamic characteristics of one dimensional slider bearings: Rabinowitsch fluid model. Tribology Letters, 10:237-243, 2001. doi: 10.1023/A:1016678208150.
[32] U.P. Singh, R.S. Gupta, and V.K. Kapur. Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model. Chemical and Process Engineering, 32(4):333-349, 2011. doi: 10.2478/v10176-011-0027-1.
[33] J.R. Lin. Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribology International, 52:190-194, 2012. doi: 10.1016/j.triboint. 2012.02.017.
[34] U.P. Singh. Application of Rabinowitsch fluid model to pivoted curved slider bearings. Archive of Mechanical Engineering, 60(2):247-266, 2013. doi: 10.2478/meceng-2013-0016.
[35] U.P. Singh and R.S. Gupta. Dynamic performance characteristics of a curved slider bearing operating with ferrofluids. Advances in Tribology, 2012:1-6, 2012. doi: 10.1155/2012/278723.
[36] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the squeeze film characteristics between a long cylinder and a flat plate: Rabinowitsch model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1):34-42, 2013. doi: 10.1177/1350650112458742.
[37] S.C. Sharma and S.K. Yadav. Performance of hydrostatic circular thrust pad bearing operating with Rabinowitsch fluid model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(11):1272-1284, 2013. doi: 10.1177/1350650113490147.
[38] Y. Huang and Z. Tian. A new derivation to study the steady performance of hydrostatic thrust bearing: Rabinowitch fluid model. Journal of Non-Newtonian Fluid Mechanics, 246:31-35, 2017. doi: 10.1016/j.jnnfm.2017.04.012.
[39] U.P. Singh, P. Sinha, and M. Kumar. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tibology, 235(2):386-395, 2021. doi: 10.1177/1350650120945887.
[40] A. Cameron. Basic Lubrication Theory, 3rd edition. E. Horwood, 1981.
Go to article

Authors and Affiliations

Udaya P. Singh
1
ORCID: ORCID

  1. Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors present the shakedown analysis of the plate structures pre-loaded beyond the elastoplastic range. Two cases of loading are considered, namely: the structure is subjected to the action of two independent sets ofloads with constant points of application or one parameter set of loads moves slowly according to an a priori described program. As a result, the safe loading boundary or the shakedown load parameter are calculated, respectively, by means of the finite element method (FEM). Three examples confirmed the effectiveness of the proposed algorithms of analysis.
Go to article

Authors and Affiliations

Czesław Cichoń
Paweł Stąpór
Download PDF Download RIS Download Bibtex

Abstract

The motion of a ring pack on a thin oil film covering a cylinder liner has been analysed. In contrast to the previous paper [8], which considered only hydrodynamic phenomena, in the present paper a mixed lubrication case is also taken into account. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng [5], [6] and Greenwood, Trip [2] have been combined and used in this paper. Results of numerical simulations of this phenomenon have been presented. The model of ring motion considered takes the following phenomena into account: hydrodynamic and contact forces, spring and gas forces and the local motion of each ring in piston grooves. Differences between the motion of the ring on a thick and thin oil film are analysed and discussed.
Go to article

Authors and Affiliations

Andrzej Wolff
Janusz Piechna
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibilities of neural network application in recognition of rotor blade faults. Computer calculated data of rotor response due to faults were used for neural network training. The rotor was modeled by elastic axes with distribution of Jumped masses. The rotor defects were simulated by changing aerodynamic, inertial or stiffness properties of one of the blades. Time results were subjected to spectral analysis for the purpose of neural networks training.
Go to article

Authors and Affiliations

Jarosław Stanisławski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the idea of a system for controlling the movement of a flowmeter for air velocity profile measurement. In such a system, due to massive amount of data and limitations of the Data Acquisition Equipment, it is necessary to use moveable sensors. The flowmeter sensor is moved with the use of a linear module with a stepper motor and a tooth-belt drive. The location and speed of the sensor are controlled by a program based on the idea of virtual instrument. The proposed structure allows the user to control operation of the stand and provides automatic measurement. A wide range of velocity and step increments of the stepper motor drive, and flexibility of the virtual instrument software, allow one to create effective measurement systems ensuring sufficiently precise location with optimal time duration of measurement. It is shown that the linear module with tooth-belt is an effective alternative for similar modules with micro-screw drives.

Go to article

Authors and Affiliations

Mirosław Kabacinski
Roland Pawliczek
Download PDF Download RIS Download Bibtex

Abstract

Thrust bearing model is developed for fluid flow calculation and for determination of bearing integral characteristics in the presence of sliding surfaces closure and shaft angular displacements. The model is based on the coupled solution of the problem of incompressible fluid flow between the sliding surfaces and the problem of bearing and shaft elements deformation under the action of the fluid film pressure. Verification of the bearing model results is carried out by the comparison versus the fluid flow calculation results obtained by STAR-CD software and the experimental and theoretical results represented in the certain literature. Thrust bearing characteristics are determined versus sliding surfaces closure and rotating disk (runner) angular displacements. The contribution of the sliding surfaces deformations into bearing integral characteristics is estimated.

Go to article

Authors and Affiliations

Mikhail Temis
Alexander Lazarev
Download PDF Download RIS Download Bibtex

Abstract

There exist cases where precise simulations of contact forces do not allow modeling the gears as rigid bodies but a fully elastic description is needed. In this paper, a modally reduced elastic multibody system including gear contact based on a floating frame of reference formulation is proposed that allows very precise simulations of fully elastic gears with appropriately meshed gears in reasonable time even for many rotations. One advantage of this approach is that there is no assumption about the geometry of the gears and, therefore, it allows precise investigations of contacts between gears with almost arbitrary non-standard tooth geometries including flank profile corrections.

This study presents simulation results that show how this modal approach can be used to efficiently investigate the interaction between elastic deformations and flank profile corrections as well as their influence on the contact forces. It is shown that the elastic approach is able to describe important phenomena like early addendum contact for insufficiently corrected profiles in dependence of the transmitted load. Furthermore, it is shown how this approach can be used for precise and efficient simulations of beveloid gears.

Go to article

Authors and Affiliations

Trong Phu Do
Peter Eberhard
Pascal Ziegler
Download PDF Download RIS Download Bibtex

Abstract

The peculiarity of offshore cranes, i. e. cranes based on ships or drilling platforms, is not only a significant motion of their base, but also the taut-slack phenomenon. Under some circumstances a rope can temporarily go completely slack, while a moment later, the force in the rope can increase to nominal or even higher value. Periodic occurrence of such phenomena can be damaging to the supporting structure of the crane and its driver. In the paper, mathematical models of offshore cranes that allow for analysis of the taut-slack phenomenon are presented. Results of numerical calculations show that the method of load stabilization proposed by the authors in their earlier works can eliminate this problem.

Go to article

Authors and Affiliations

Andrzej Maczyński
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

In order for a quadruped robot to be able to move on wheels while keeping its platform in horizontal position, and to walk, the kinematic system of its limbs should be so designed that each of the wheels has at least four degrees of freedom. Consequently, the designed system will have many DOFs and many controlled drives. This paper presents a novel solution in which, thanks to a suitable limb kinematic system geometry, the number of drives for the robot travel function, i.e. travelling on an uneven surface with the robot platform kept horizontal, has been reduced by four which are used only for walking. The robot structure, the required geometry of the limb links and the driving torque characteristics are presented. Moreover, an idea of the control system is sketched. Finally, selected results of the tests carried out on the robot prototype are reported.

Go to article

Authors and Affiliations

Antoni Gronowicz
Jarosław Szrek
Download PDF Download RIS Download Bibtex

Abstract

A backward tucked somersault from the standing position is analyzed in this study. The used computations were based on a three-dimensional model of the human body defined in natural coordinates. The net torques and internal reactions occurring at the ankle, knee, hip, upper trunk-neck and neck-head joints were obtained by inverse dynamics. The achieved results confirmed the significant loads at the joints at the beginning of the landing phase and revealed the way the analyzed stunt was controlled. It was also shown that the natural coordinates provide a useful environment for modeling spatial biomechanical structures.

Go to article

Authors and Affiliations

Adam Czaplicki
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Download PDF Download RIS Download Bibtex

Abstract

Complex multi-disciplinary models in system dynamics are typically composed of subsystems. This modular structure of the model reflects the modular structure of complex engineering systems. In industrial applications, the individual subsystems are often modelled separately in different mono-disciplinary simulation tools. The Functional Mock-Up Interface (FMI) provides an interface standard for coupling physical models from different domains and addresses problems like export and import of model components in industrial simulation tools (FMI for Model Exchange) and the standardization of co-simulation interfaces in nonlinear system dynamics (FMI for Co-Simulation), see [10].

The renewed interest in algorithmic and numerical aspects of co-simulation inspired some new investigations on error estimation and stabilization techniques in FMI for Model Exchange and Co-Simulation v2.0 compatible co-simulation environments. In the present paper, we focus on reliable error estimation for communication step size control in this framework.

Go to article

Authors and Affiliations

Martin Arnold
Christoph Clauss
Tom Schierz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected methods used for estimation the unknown geometrical parameters of a spatial mechanism model, used to describe the position and orientation of the end-effector, for example the coordinates of the center points of spherical joints, link dimensions etc. These data are necessary when dealing with computer simulation of any mechanism. The parameters are estimated based on coordinate measurements of selected points, located on the real mechanism links, using a portable manipulator with serial structure composed of 6 revolute joints and a spherical probe, but other techniques of acquiring point coordinates are applicable as well. The described methods can be used in the cases of a disassembled link, an assembled mechanism and redundant data sets. The methods are characterized by accuracy and robustness in the presence of different levels of noise, stability with respect to degenerate data sets, and low computation time. Special attention is paid to the case when the wanted parameters are hard to measure directly. Numerical examples are presented dealing with 5-link mechanism used to guide front wheels of a car.

Go to article

Authors and Affiliations

Józef Knapczyk
Michał Maniowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the issue of calibration and verification of an original module, which is a part of the robotic turbojet engines elements processing station. The task of the module is to measure turbojet engine compressor blades geometric parameters. These type of devices are used in the automotive and the machine industry, but here we present their application in the aviation industry. The article presents the idea of the module, operation algorithm and communication structure with elements of a robot station. The module uses Keyence GT2-A32 contact sensors. The presented information has an application nature. Functioning of the module and the developed algorithm has been tested, the obtained results are satisfactory and ensure sufficient process accuracy. Other station elements include a robot with force control, elements connected to grinding such as electrospindles, and security systems.

Go to article

Bibliography

[1] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Robot-operated quality control station based on the UTT method. Open Engineering, 7(1):37–42, 2017. doi: 10.1515/eng-2017-0008.
[2] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):345–348, 2017. doi: 10.17559/TV-20160820141242.
[3] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Software for the robotoperated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):349–353, 2017. doi: 10.17559/TV-20160820142224.
[4] A. Burghardt, D. Szybicki, K. Kurc, M. Muszyńska, and J. Mucha. Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength of Materials, 49(4):594–604, 2017. doi: 10.1007/s11223-017-9903-3.
[5] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology Research Journal, 11(1):232–236, 2017. doi: 10.12913/22998624/68466.
[6] P. Gierlak and M. Szuster. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robotics and Autonomous Systems, 95:80–101, 2017. doi: 10.1016/j.robot.2017.05.015.
[7] P. Gierlak, A. Burghardt, D. Szybicki, M. Szuster, and M. Muszyńska. On-line manipulator tool condition monitoring based on vibration analysis. Mechanical Systems and Signal Processing, 89:14–26, 2017. doi: 10.1016/j.ymssp.2016.08.002.
[8] Z. Hendzel, A. Burghardt, P. Gierlak, and M. Szuster. Conventional and fuzzy force control in robotised machining. Solid State Phenomena, 210:178–185, 2014. doi: 10.4028/www.scientific.net/SSP.210.178.
[9] O. Yilmaz, N. Gindy, and J. Gao. A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2):190–201, 2010. doi: 10.1016/j.rcim.2009.07.001.
[10] P. Zhao andY. Shi. Posture adaptive control of the flexible grinding head for blisk manufacturing. The International Journal of Advanced Manufacturing Technology, 70(9–12):1989–2001, 2014. doi: 10.1007/s00170-013-5438-3.
[11] P. Zhsao and Y.C. Shi. Composite adaptive control of belt polishing force for aeroengine blade. Chinese Journal of Mechanical Engineering, 26(5):988–996, 2013. doi: 10.3901/CJME.2013.05.988.
[12] X. Xu, D. Zhu, H. Zhang, S. Yan, and H. Ding. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. The International Journal of Advanced Manufacturing Technology, 90(1–4):635–647, 2017. doi: 10.1007/s00170-016-9331-8.
[13] W.L. Li., H. Xie, G. Zhang, S.J. Yan, and Z.P. Yin. Hand–eye calibration in visually-guided robot grinding. IEEE Transactions on Cybernetics, 46(11):2634–2642, 2016. doi: 10.1109/TCYB.2015.2483740.
[14] B. Sun and B. Li. Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sensors Journal, 16(5):1377–1384, 2016. doi: doi.org/10.1109/TMECH.2016.2574813">10.1109/TMECH.2016.2574813.
[16] Y. Zhang, Z.T. Chen, and T. Ning. Efficient measurement of aero-engine blade considering uncertainties in adaptive machining. The International Journal of Advanced Manufacturing Technology, 86(1–4):387–396, 2016. doi: 10.1007/s00170-015-8155-2.
[17] L. Qi, Z. Gan, C. Yun, and Q. Tang. A novel method for Aero engine blade removed-material measurement based on the robotic 3D scanning system. In Proceedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, volume 4, pages 72–75, Changchun, China, 24–26 August, 2010. doi: 10.1109/CMCE.2010.5610214.
[18] J. Godzimirski. New technologies of aviation turbine engines. Transactions of the Institute of Aviation, 213:22–36, 2011 (in Polish).
[19] G. Budzik. Geometric Accuracy of Aircraft Engine Turbine Blades. Publishing House of Rzeszow University of Technology, 2013 (in Polish).
Go to article

Authors and Affiliations

Dariusz Szybicki
1
Andrzej Burghardt
1
Krzysztof Kurc
1
Paulina Pietruś
1

  1. Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland.

This page uses 'cookies'. Learn more