Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19' martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
Download PDF Download RIS Download Bibtex

Abstract

Lead Zirconium Titanate (PZT) is a potential piezoelectric material for sensor and transducer applications due to its outstanding piezoelectric coupling near the morphotropic phase boundary (MPB). This is because PZT can switch between tetragonal and rhombohedral phases. PZT is still considered to be one of the piezoelectric materials that has received the greatest amount of attention from researchers and is used the most frequently. Modification with Lithium will improve the piezoelectric properties. In this study, the structural properties and morphological studies of Lead zirconium titanate and Lead zirconium titanate with Lithium modification have been evaluated. Various Scherrer’s models and other models, such as the Williamson-Hall model and Size-strain plots model, were used to display the observed fluctuations in crystallite size. Morphological analysis was used to determine the particle size. Graphs showing the distribution of particle sizes were drawn.
Go to article

Authors and Affiliations

A. Navakoti
1
D.S. Chakram
1
M. Dasari
1

  1. Gitam (Deemed To Be University), Department Of Physics, Gss, Visakhapa tnam-45, India
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19’ martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this article a complete procedure to investigate thin semiconductor plates (epitaxial layers), including high-resolution X-ray diffraction measurements, mathematical modelling of both crystalline structure and crystalline microstructure and computations to approximate solving inverse problems, is proposed and described in detail. The method is successfully applied to estimate crystalline homogeneity of a square indium-arsenide plate epitaxially-grown on gallium-arsenide substrate. To this end, the specimen is tested in nine areas around points forming a square grid. It is demonstrated that whole specimen may be regarded as a single large crystalline grain consisting of crystallites separated by small-angle boundaries. The crystallites occur as rode-like cuboids elongated in the direction perpendicular to the plate surface, with different areas of the sample and with base sizes not much differing. The mean-absolute second-order strain is very small and almost constant in the whole sample. The first-order strain also appears and, effectively, the structure of the crystalline layer is tetragonal with unit-cell parameters being smaller parallelly and larger perpendicularly to the layer surface and varying slightly in the layer. The results are presented in tables and figures and commented.
Go to article

Authors and Affiliations

Sebastian Odrzywolski
1
Marek Andrzej Kojdecki
2
Sebastian Złotnik
1
ORCID: ORCID
Łukasz Kubiszyn
3
ORCID: ORCID
Jarosław Wróbel
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
  2. Institute of Mathematics and Cryptology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
  3. VIGO Photonics S.A., 129/133 Poznanska St., 05-850 Ozarów Mazowiecki, Poland

This page uses 'cookies'. Learn more