Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.

Go to article

Authors and Affiliations

Jihui Luo
Fang He
Download PDF Download RIS Download Bibtex

Abstract

In plants belonging to the Ranunculaceae the floral nectaries may differ in origin, location in the flower, shape and structure. In many cases they are defined as modified tepals or modified stamens. The nectary organs in this family are frequently termed "honey leaves," and staminodial origin is attributed to them. Gynopleural and receptacular nectaries are rarely found in Ranunculaceae. To date there are no reports on the structure of the nectary organs in plants of the genus Pulsatilla. We used light and scanning electron microscopy to study the location and structure of the nectaries in Pulsatilla slavica and P. vulgaris flowers. The staminodial nectaries were found to be nectar-secreting organs. The number of stamens per flower (102-398) increases with plant age. The share of staminodes is 12-15%. The staminodes are composed of a filament and a modified head. They are green due to the presence of chloroplasts in the epidermal and parenchymal cells. The parenchymal cells are in a loose arrangement. Stomata (3-20), through which nectar exudation occurred, were found only in the abaxial epidermis of the staminode head. The stomata are evenly distributed and have well-developed outer cuticular ledges. Some of them are immature during nectar secretion, with their pores covered by a layer of cuticle. During the activity of the nectariferous organs in the flowers, primary (on the staminode surface) and secondary nectar (at the base of tepals) are presented. The staminodes of the two Pulsatilla species show similar structural features and have similar shares in the androecium.

Go to article

Authors and Affiliations

Elżbieta Weryszko-Chmielewska
Aneta Sulborska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the studies carried out in the years 1996-1998 was to establish the composition of bacteria and fungi communities in the soil of spring wheat and winter wheat. Besides, the studies provided the information on quantitative and qualitative composition of amino acids as well as the amount of water soluble sugars in roots exudates of these cereals. The microbiological analysis of I g of dry weight of soil coming from the rhizosphere of spring wheat revealed the mean number of 4.94 x I O' bacteria colonies and 45.08 x 1 O 3 fungi colonies. In the case ofwinter wheat, in Ig of dry weight of the rhizosphere soil 5.07 x 10 'bacteria colonies and 28.59 x l O 3 fungi colonies (mean of three year studies) were found. Besides, winter wheat, through the proper composition of root exudates, created positive nutritional conditions for the growth of microorganisms showing antagonistic effect towards pathogenic fungi. The rhizosphere soil of winter wheat contained 1.5 times more antagonistic bacteria and more than twice antagonistic fungi as compared to spring wheat.
Go to article

Authors and Affiliations

Danuta Pięta
Elżbieta Patkowska

This page uses 'cookies'. Learn more