Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size.

Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate

that 80 % of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several

scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing

to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the

produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local

composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty

five times increase in wear resistance compared to manganese cast steel containing 18 % Mn.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
B. Grabowska
Ł. Szymański
P. Kurtyka
W. Maziarz
P. Czapla
Download PDF Download RIS Download Bibtex

Abstract

A method for fabrication of a composite layer on the surface of a steel casting using coating containing TiC substrates was presented. The reaction of the synthesis of the ceramic phase was based on the SHS method (Self-propagating High-temperature Synthesis) and was triggered by the heat of molten steel. High hardness titanium carbide ceramic phases were obtained, which strengthened the base material improving its performance properties presented in this article. Microstructural examinations carried out by light microscopy (LM) on the in-situ produced composite layers showed that the layers were the products of reaction of the TiC synthesis – the phenomenon called “fragmentation” by the authors of study. The examinations carried out by scanning electron microscopy (SEM) have revealed the presence of spheroidal precipitated and free of impurities. The presence of titanium carbide was twofold increase in hardness in the area of the composite layer as compared to the base alloy which was carbon cast steel.
Go to article

Bibliography

[1] Swain, B., Bhuyan, S., Behera, R., Mohapatra, S., Behera, A. (2020). Wear: a serious problem in industry. In Patnaik, A., Singh, T., & Kukshal, V. (Eds.), Tribology in Materials and Manufacturing-Wear, Friction and Lubrication (pp. 279-298). DOI: 10.5772/intechopen.94211.

[2] Nowotyńska, I., Kut, S. & Kogut, K. (2018). Laser hardening of tools with the use of the beam. Autobusy. 19(6), 636-639. DOI: 10.24136/atest.2018.147. (in Polish).

[3] Wołowiec-Korecka, E., Korecki, M., Klimek, L. (2022). Influence of flow and pressure of carburising mixture on low-pressure carburising process efficiency. Coatings. 12(3), 337, 1-7. https://doi.org/10.3390/coatings12030337.

[4] Jhao-Yo Guo, Yu-Lin Kuo, Hsien-Po Wang, (2021). A facile nitriding approach for improved impact wear of martensitic cold-work stell using H2/N2 mixture gas in an ac pulsed atmospheric plasma jet. Coatings. 11(9), 1119, 1-15. https://doi.org/10.3390/coatings11091119.

[5] Sedov, V., Martyanov, A., Altakhov, A. (2022). Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD. Coatings. 10(10), 939, 1-10. DOI:10.3390/coatings10100939

[6] Bitay, E., Tóth, L., Kovacs, T.A., Nyikes, Z. & Gergely, A.L. (2021). Experimental study on the influence of TiN/AlTiN PVD layer on the surface characteristics of hot work toll steel. Applied Sciences. 11(19), 9309, 1-12. https://doi.org/10.3390/app11199309.

[7] Zhu, Yc., Wei, Zj., Rong, Sf., Wang, H. & Zou, C. (2016). Formation mechanism of bimetal composite layer between LCS and HCCI. China Foundry. 13, 396-401. https://doi.org/10.1007/s41230-016-5021-2.

[8] Szajnar, J. & Wróbel, T. (2015). Bimetallic casting: ferritic stainless steel – grey cast iron. Archives of Metallurgy and Materials. 60(3), 2361-2365. DOI: 10.1515/amm-2015-0385. ISSN 1733-3490.

[9] Wang, F., Xu, L., Wei, S. et al. (2021). Preparation and wear properties of high-vanadium alloy composite layer. Friction. 10, 1166-1179. https://doi.org/10.1007/s40544-021-0515-3.

[10] Ovcharenko, P.G., Leshchev, A.Y., Tarasov, V.V. et al. (2021). Effect of alloyed coating composition on composite casting surface layer properties. Metallurgist. 64, 1208-1213. https://doi.org/10.1007/s11015-021-01106-z

[11] Studnicki, A., Dulska, A. & Szajnar, J. (2017). Reinforcing cast iron with composite insert. Archives of Metallurgy and Materials. 62(1), 355-357, DOI: 10.1515/amm-2017-0054.

[12] Fraś, E., Olejnik, E., Janas, A. & Kolbus, A. (2009). FGMs generated method SHSM. Archives of Foundry Engineering 9(2), 123-128. ISSN (1897-3310).

[13] Olejnik, E., Janas, A., Kolbus, A. & Grabowska, B. (2011) Composite layer fabricated by in situ technique in iron castings. Composites (Kompozyty). 11(2), 120-124.

[14] Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon S. (2018) Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.

[15] Szymański, Ł. (2020). Composite layers produced in situ in castings based on Fe alloys. PhD thesis. AGH, Kraków.

[16] Szymański, Ł., Sobczak, J.J., Peddeti. K. (2024). Production of metal matrix composite reinforced by TiC by reactive infiltration of cast iron into Ti + C preforms. Ceramic international. 50(10), 17452-17464. https://doi.org/10.1016/j.ceramint.2024.02.233.

[17] Szymański, Ł., Olejnik, E. & Sobczak, J.J. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ cast steel and gray cast iron. Elsevier. Journal of Materials Processing Technology. 308, 117688, 1-15. https://doi.org/10.1016/j.jmatprotec.2022.117688.

[18] Szymański, Ł., Olejnik, E., Sobczak, J.J. (2022). Improvement of TiC/Fe in situ composite layer formation on surface of Fe-based castings. Materials Letters. 309, 131399, 1-5. DOI: https://doi.org/10.1016/j.matlet.2021.131399.
Go to article

Authors and Affiliations

J. Marosz
S. Sobula
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as

SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry

machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of

specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and

consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and

spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel

exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in

second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g

for base steel

Go to article

Authors and Affiliations

S. Sobula
T. Tokarski
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

The work presents the investigation results concerning the structure of composite pressure die castings with AlSi11 alloy matrix reinforced

with SiC particles. Examination has been held for composites containing 10 and 20 volume percent of SiC particles. The arrangement of

the reinforcing particles within the matrix has been qualitatively assessed in specimens cut out of the castings. The index of distribution

was determined on the basis of particle count in elementary measuring fields. The tensile strength, the yield point and elongation of the

obtained composite were measured. Composite castings were produced at various values of the piston velocity in the second stage of

injection, diverse intensification pressure values, and various injection gate width values. The regression equation describing the change of

the considered arrangement particles index and mechanical properties were found as a function of the pressure die casting parameters. The

infuence of particle arrangement in composite matrix on mechanical properties these material was examined and the functions of

correlations between values were obtained. The conclusion gives the analysis and the interpretation of the obtained results.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
A. Pasieka
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by

means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of

the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive

infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy,

using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of

composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese

cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ballon-disc

wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in

the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base

alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the

composite zone was five times lower than chromium white cast iron containing 20 % Cr.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
B. Grabowska
Ł. Szymański
P. Kurtyka
P. Czapla
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an attempt to produce aluminum matrix composites reinforced with short carbon fibers by precision casting in a chamber with a pressure lower than atmospheric pressure. The composite casting process was preceded by tests related to the preparation of the reinforcement. This is related to the specificity of the precision casting process, in which the mold for shaping the castings is fired at a temperature of 720°C before pouring. Before the mold burns, the reinforcement must be inside, while the carbon fiber decomposes in the atmosphere at 396°C. In the experiment, the reinforcement in the form was secured with flake graphite and quartz sand. The performed firing procedure turned out to be effective. The obtained composite castings were evaluated in terms of the degree of alloy saturation and the displacement of carbon fibers. As a result of the conducted tests, it was found that as a result of unfavorable arrangement of fibers in the CF preform, the flow of metal may be blocked and porosity may appear in the casting.
Go to article

Bibliography

[1] Kumar, A., Lal, S. & Kumar, S. (2013). Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Materials Research and Technology. 2(3), 250 - 254. https://doi.org/10.1016/j.jmrt.2013.03.015.
[2] Kumar, A., Vichare., O., Debnath, K. & Paswan, M. (2021). Fabrication methods of metal matrix composites (MMCs). Materialstoday: Proceedings. 46(15), 6840-6846. https://doi.org/10.1016/j.matpr.2021.04.432.
[3] Zyska, A., Konopka, Z., & Łągiewka, M, (2020). Impact strength of squeeze casting AlSi13Cu2-CF composite. Archives of Foundry Engineering. 20(2), 49-52. DOI: 10.24425/afe.2020.131301.
[4] Previtali, B., Pocci, D. & Taccardo, C. (2008). Application of traditional investment casting process to aluminium matrix composites. Composites Part A: Applied Science and Manufacturing. 39(10), 1606-1617. https://doi.org/10.1016/j.compositesa.2008.07.001.
[5] Pazhani, A., Venkatraman, M., Xavior, A. Moganraj, M., Batako, A., Paulsamy, J., Jayaseelan, J., Anbalagan, A. & Bavan, S.J. (2023). Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications. Materials & Design. 230, 111990. https://doi.org/10.1016/j.matdes.2023.111990.
[6] Buchanan, E.K., Sgobba, S., Celuch D.M., Gomez, P.F., Onnela, A., Rose P., Postema, H., Pentella, M., Lacombe, G., Thomas, B., de Langlade, R. & Paquin, Y. (2023). Assessment of two advanced aluminium-based metal matrix composites for application to high energy physics detectors. Materials. 16(1), 268, 1-17. https://doi.org/10.3390/ ma16010268.
[7] Krishnan, R., Pandiaraj, S., Muthusamy, S., Panchal, H., Alsoufi, S.M., Ibrahim, M.M.A. & Elsheikh, A. (2022). Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behawior a review. Journal of Materials Research and Technology. 20, 650-670. https://doi.org/10.1016/j.jmrt.2022.06.178.
[8] Dmitruk, A., Żak, A., Naplocha, K., Dudziński, W. & Morgiel, J. (2018). Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization. 146, 182-188. https://doi.org/10.1016/j.matchar.2018.10.005.
[9] Gawdzińska, K., Chybowski, L., Przetakiewicz, W. & Laskowski R. (2017). Application of FMEA in the quality estimation of metal matrix composite castings produced by squeeze infiltration. Archives of Metallurgy and Materials. 62(4), 2171-2182. DOI: 10.1515/amm-2017-0320.
[10] Mahaviradhan, N., Sivaganesan, S., Sravya, P.N. & Parthiban, A. (2021). Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite. Materialstoday: Proceedings. 39(1), 743-747. https://doi.org/10.1016/j.matpr.2020.09.443.
[11] Szymański, M., Przestacki, D. & Szymański, P. (2022). Tool wear and surface roughness in turning of metal matrix composite built of Al2O3 sinter saturated by aluminum alloy in vacuum condition. Materials. 15(23), 8375, 1-17. https://doi.org/10.3390/ma15238375.
[12] Jian-jun Sha, Zhao-zhao Lu, Ru-yi Sha, Yu-fei Zu, Ji-xiang Dai, Yu-qiang Xian, Wei Zhang, Ding Cui, Cong-lin Yan. (2021). Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites bysqueeze melt infiltration technique. Transactions of Nonferrous Metals Society of China. 31(2), 317-330. https://doi.org/10.1016/S1003-6326(21)65498-5.
[13] Constantin, H., Harper, L., Kenned, R.A. (2018). Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structures. Journal of Materials Processing Technology. 255, 66-75. https://doi.org/10.1016/j.jmatprotec.2017.11.059.
[14] Shirvanimoghaddam, K., Hamim, U.S., Akbari, K.M., Fakhrhoseini, M.S., Khayyam, H., Pakseresht, H.A., Ghasali, W., Zabet, M., Munir, S.K., Jia, S., Davim, P.J. & Naebe, M. (2017). Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing. 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032.
[15] Piasecki, A., Paczos, P., Tuliński, M., Kotkowiak, M., Popławski, M., Jakubowicz, M., Boncel, S., Marek, A., Buchwald, T., Gapiński, B., Terzyk, P.A., Korczeniewski, E. & Wieczorowski, M. (2023). Microstructure, mechanical properties and tribological behavior of Cu-nano TiO2-MWCNTs composite sintered materials. Wear. 522, 204834-1-204834-16. https://doi.org/10.1016/j.wear.2023.204834.
[16] Ślosarczyk, A., Klapiszewska, I., Parus, A., Balicki, S., Kornaus, K., Gapiński, B., Wieczorowski, M., Wilk, A.K., Jesionowski, T., Klapiszewski, ł. (2023). Antimicrobial action and chemical and physical properties of CuO doped engineered cementitious composites. Scientific Reports. 13(1), 10404-1-10404-16. https://doi.org/10.1038/s41598-023-37673-1.
[17] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka, D., Gawdzińska, K., Przestacki, D. & Szymański, P. (2020). Decision Support System in the Field of Defects Assessment in the Metal Matrix Composites Castings. Materials. 13(16), 3552, 1-27. https://doi.org/10.3390/ma13163552.
[18] Ma, Y., Kang, Z., Lei, X., Chen, X., Gou, C., Kang, Z. & Wang, S. (2023). Coupling effect of critical properties shift and capillary pressure on confined fluids: A simulation study in tight reservoirs. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15675.
[19] Anson, P.J., Drew, L.A.R. & Gruzleski, E.J. (1999). The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres. Metallurgical and Materials Transactions B. 30, 1027-1032. https://doi.org/10.1007/s11663-999-0108-4.
[20] Bainbridge, F.I. & Taylor, A.J. (2013). The surface tension of pure aluminum and aluminum alloys. Metallurgical and Materials Transactions A. 44, 3901-3909. https://doi.org/10.1007/s11661-013-1696-9.
[21] Molina, M.J., Voytovych, R., Louis, E. & Eustathopoulos, N. (2007). The surface tension of liquid aluminium in high vacuum: The role of surface condition. International Journal of Adhesion and Adhesives. 27(5), 394-401. https://doi.org/10.1016/j.ijadhadh.2006.09.006.
[22] Bao, S., Tang, K., Kvithyld, A., Engh, T. & Tangstad, M. (2012). Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Transactions of Nonferrous Metals Society of China. 22(8), 1930-1938. https://doi.org/10.1016/S1003-6326(11)61410-6.

Go to article

Authors and Affiliations

P. Szymański
1
ORCID: ORCID

  1. Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the high frequency oscillation (HFO) accidents caused by long link delay in modular multilevel converter-based high-voltage direct current (MMC-HVDC) transmission projects have posed new challenges to the safety and stability of power system operation. This paper adopts delay stability margin to measure the high frequency stability of the MMC-HVDC system and derives the state space model of the MMC-HVDC time-delay system considering the link delay. The Lyapunov direct method is extended to the stability analysis of the MMC-HVDC time-delay system and the delay stability margin of the system is solved based on the linear matrix inequality (LMI). Then the influence of the controller parameters on the delay stability margin of the MMC-HVDC system is analyzed. Based on improved Smith predictive compensation control, an HFO suppression strategy of the MMC-HVDC system is proposed to improve the high frequency stability of the system by equivalently reducing and eliminating the total link delay. The effectiveness of the Lyapunov direct method for solving the delay stability margin of the MMC-HVDC system and the superiority of the proposed HFO suppression strategy are verified by the time-domain simulation in PSCAD/EMTDC. The research provides a novel viewpoint for the study of the HFO and suppression strategy of the MMC-HVDC system.
Go to article

Authors and Affiliations

Fang Zhang
1
ORCID: ORCID
Xiugong Liang
1
Wenpeng Yao
1

  1. School of Electrical and Information Engineering, Tianjin University 92 Weijin RoadNankai District, Tianjin, China
Download PDF Download RIS Download Bibtex

Abstract

There is growing interest in developing more advanced materials, as conventional materials are unable to meet the demands of the automotive, aerospace, and military industries. To meet the needs of these sectors, the use of advanced materials with superior properties, such as metal matrix composites, is essential. This paper discusses the evaluation of microstructural and mechanical properties of conventional eutectic EN AC-AlSi12CuNiMg aluminum alloy (AlSi12) and advanced composite based on EN AC-AlSi12CuNiMg alloy matrix with 10 wt% SiC particle reinforcement (AlSi12/10SiCp). The microstructure of these materials was investigated with the help of metallographic techniques, specifically using a light microscope (LM) and a scanning electron microscope (SEM). The results of the microstructural analysis show that the SiC particles are uniformly distributed in the matrix. The results of the mechanical tests indicate that the tensile properties and hardness of the AlSi12/10SiCp composite are significantly higher than those of the unreinforced eutectic alloy. For AlSi12/10SiCp composite, the tensile strength is 21% higher, the yield strength is 16% higher, the modulus of elasticity is 20% higher, and the hardness is 11% higher than unreinforced matrix alloy. However, the unreinforced AlSi12 alloy has a percentage elongation that is 16% higher than the composite material. This shows that the AlSi12/10SiCp composite has a lower ductility than the unreinforced AlSi12 alloy. The tensile specimens of the tested composite broke apart in a brittle manner with no discernible neck development, in contrast to the matrix specimens, which broke apart in a ductile manner with very little discernible neck formation.
Go to article

Bibliography


[1] Rashnoo, K., Sharifi, M. J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441, 1-13. DOI: 10.1016/j.matchemphys.2020.123441.

[2] Azadi, M., Winter, G., Farrahi, G.H. & Eichlseder, W. (2015). Comparison between isothermal and non-isothermal fatigue behavior in a cast aluminum-silicon-magnesium alloy. Strength of Materials. 47(6), 840-848. DOI: 10.1007/s11223-015-9721-4.

[3] Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum metal matrix composites with SiC, Al 2 O 3 and graphene–review. Archives of Foundry Engineering. 18(2), 5-10. DOI: 10.24425/122493.

[4] Arora, A., Astarita, A., Boccarusso, L. & Mahesh, V.P. (2016). Experimental characterization of metal matrix composite with aluminium matrix and molybdenum powders as reinforcement. Procedia Engineering. 167, 245-251. DOI: 10.1016/j.proeng.2016.11.694.

[5] Farokhpour, M., Parast, M.S.A. & Azadi, M. (2022). Evaluation of hardness and microstructural features in piston aluminum-silicon alloys after different ageing heat treatments. Results in Materials. 16, 100323, 1-11. DOI: 10.2139/ssrn.4162353.

[6] Sirata, G.G., Wacławiak, K. & Dyzia, M. (2022). Mechanical and Microstructural Characterization of aluminium alloy, EN AC-Al Si12CuNiMg. Archives of Foundry Engineering. 22(3), 34-40. DOI: 10.24425/afe.2022.140234.

[7] Kurzawa, A. & Kaczmar, J.W. (2017). Bending strength of EN AC-44200–Al2O3 composites at elevated temperatures. Archives of Foundry Engineering. 17(1), 103-108. DOI: 10.1515/afe-2017-0019.

[8] Lijay, K.J., Selvam, J.D.R., Dinaharan, I. & Vijay, S.J. (2016). Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Transactions of Nonferrous Metals Society of China. 26(7), 1791-1800. DOI: 10.1016/S1003-6326(16)64255-3.

[9] Lakshmipathy, J. & Kulendran, B. (2014). Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. International Journal of Refractory Metals and Hard Materials. 46, 137-144. DOI: 10.1016/j.ijrmhm.2014.06.007.

[10] Jayashree, P.K., Gowrishankar, M.C., Sharma, S., Shetty, R., Hiremath, P. & Shettar, M. (2021). The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints. Journal of Materials Research and Technology. 12, 2325-2339. DOI: 10.1016/j.jmrt.2021.04.015.

[11] Dolata-Grosz, A., Dyzia, M., Śleziona, J. & Wieczorek, J. (2007). Composites applied for pistons. Archives of Foundry Engineering. 7(1), 37-40. ISSN (1897-3310).

[12] Moćko, W. & Kowalewski, Z.L. (2011). Mechanical properties of A359/SiCp metal matrix composites at wide range of strain rates. Applied Mechanics and Materials. 82, 166-171. https://doi.org/10.4028/www.scientific.net/ AMM.82.166.

[13] Dolata, A.J. & Dyzia, M. (2014). Effect of Chemical Composition of the Matrix on AlSi/SiC p+ C p Composite Structure. Archives of Foundry Engineering. 14(1), 135-138. ISSN (1897-3310).

[14] Wysocki, J., Grabian, J. & Przetakiewicz, W. (2007). Continuous drive friction welding of cast AlSi/SiC (p) metal matrix composites. Archives of Foundry Engineering. 7(1), 47-52. ISSN (1897-3310).

[15] Li, R., Pan, Z., Zeng, Q. & Xiaoli, Y. (2022). Influence of the interface of carbon nanotube-reinforced aluminum matrix composites on the mechanical properties–a review. Archives of Foundry Engineering. 22(1), 23-36. DOI: 10.24425/afe.2022.140213.

[16] Dolata, A.J., Mróz, M., Dyzia, M. & Jacek-Burek, M. (2020). Scratch testing of AlSi12/SiCp composite layer with high share of reinforcing phase formed in the centrifugal casting process. Materials. 13(7), 1685, 1-17. DOI: 10.3390/ma13071685.

[17] Pawar, P.B., & Utpat, A.A. (2014). Development of aluminium based silicon carbide particulate metal matrix composite for spur gear. Procedia Materials Science, 6, 1150-1156. DOI:10.1016/j.mspro.2014.07.187.

[18] Miracle, D.B. (2005). Metal matrix composites–from science to technological significance. Composites science and technology, 65(15-16), 2526-2540. DOI: 10.1016/j.compscitech.2005.05.027.

[19] Dyzia, M. (2017). Aluminum matrix composite (AlSi7Mg2Sr0. 03/SiCp) pistons obtained by mechanical mixing method. Materials. 11(1), 42, 1-14. DOI: 10.3390/ma11010042.

[20] Sahoo, B.P.,& Das, D. (2019). Critical review on liquid state processing of aluminium based metal matrix nano-composites. Materials Today: Proceedings. 19, 493-500. DOI: 10.1016/j.matpr.2019.07.642.

[21] Yar, A.A., Montazerian, M., Abdizadeh, H. & Baharvandi, H.R. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of alloys and Compounds. 484(1-2), 400-404. DOI: 10.1016/j.jallcom.2009.04.117.

[22] Kumar, B.A. & Murugan, N. (2012). Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Materials & Design. 40, 52-58. DOI: 10.1016/j.matdes.2012.03.038.

[23] Peng, L.M., Han, K.S., Cao, J.W. & Noda, K. (2003). Fabrication and mechanical properties of high-volume-fraction Si3N4-Al-based composites by squeeze infiltration casting. Journal of Materials Science Letters. 22(4), 279-282. DOI: 1022356413756.

[24] Rajan, T.P.D., Pillai, R.M., & Pai, B.C. (2008). Centrifugal casting of functionally graded aluminium matrix composite components. International Journal of Cast Metals Research. 21(1-4), 214-218. DOI: 10.1179/136404608X361972.

[25] Chen, H.S., Wang, W.X., Li, Y.L., Zhang, P., Nie, H.H. & Wu, Q.C. (2015). The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites. Journal of Alloys and Compounds. 632, 23-29. DOI: 10.1016/j.jallcom.2015.01.048.

[26] Rohatgi, P.K. & Schultz, B. (2007). Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Material Matters. 2(4), 16-20.

[27] Torralba, J.D., Da Costa, C.E. & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology. 133(1-2), 203-206. DOI: 10.1016/S0924-0136(02)00234-0.

[28] Suryanarayana, C. & Al-Aqeeli, N. (2013). Mechanically alloyed nanocomposites. Progress in Materials Science. 58(4), 383-502. DOI: 10.1016/j.pmatsci.2012.10.001.

[29] Taha, M.A. (2001). Practicalization of cast metal matrix composites (MMCCs). Materials & Design. 22(6), 431-441. DOI: 10.1016/S0261-3069(00)00077-7.

[30] Maurya, M., Maurya, N.K. & Bajpai, V. (2019). Effect of SiC reinforced particle parameters in the development of aluminium based metal matrix composite. Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy. 06(03), 200-206. DOI: 10.5109/2349295.

[31] Sharma, P., Sharma, S. & Khanduja, D. (2015). A study on microstructure of aluminium matrix composites. Journal of Asian Ceramic Societies. 3(3), 240-244. DOI: 10.1016/j.jascer.2015.04.001.

[32] Chandra, D., Chauhan, N. R. & Rajesha, S. (2020). Hardness and toughness evaluation of developed Al metal matrix composite using stir casting method. Materials Today: Proceedings. 25, 872-876. DOI: 10.1016/j.matpr.2019.12.026.

[33] Kaviyarasan, K., Kumar, J.P., Anandh, S.K., Sivavishnu, M. & Gokul, S. (2020). Comparison of mechanical properties of Al6063 alloy with ceramic particles. Materials Today: Proceedings. 22, 3067-3074. DOI: 10.1016/j.matpr.2020.03.442.

[34] Subramanya Reddy, P., Kesavan, R. & Vijaya Ramnath, B. (2017). Evaluation of mechanical properties of aluminum alloy (Al2024) reinforced with silicon carbide (SiC) metal matrix Composites. Solid State Phenomena. 263, 184-188. DOI: 10.4028/www.scientific.net/SSP.263.184.

[35] Nair, S.V., Tien, J.K. & Bates, R.C. (1985). SiC-reinforced aluminium metal matrix composites. International Metals Reviews. 30(1), 275-290. https://doi.org/10.1179/ imtr.1985.30.1.275.

[36] Ozben, T., Kilickap, E. & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology. 198(1-3), 220-225. DOI: 10.1016/j.jmatprotec.2007.06.082.

[37] Ozden, S., Ekici, R. & Nair, F. (2007). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing. 38(2), 484-494. DOI: 10.1016/j.compositesa.2006.02.026.

[38] Shuvho, M.B.A., Chowdhury, M.A., Kchaou, M., Roy, B. K., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442. DOI: 10.1016/j.cdc.2020.100442.

[39] Peng, Z. & Fuguo, L. (2010). Effects of particle clustering on the flow behavior of SiC particle reinforced Al metal matrix composites. Rare Metal Materials and Engineering. 39(9), 1525-1531. DOI: 10.1016/S1875-5372(10)60123-3.

[40] Kurzawa, A. & Kaczmar, J.W. (2017). Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles. Archives of Foundry Engineering. 17(3), 73-78. DOI: 10.1515/afe-2017-0094.

[41] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering: A. 788, 139497, 1-16. DOI: 10.1016/j.msea.2020.139497.

[42] Li, Y., Yang, Y., Wu, Y., Wang, L. & Liu, X. (2010). Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Materials Science and Engineering: A. 527(26), 7132-7137. DOI: 10.1016/j.msea.2010.07.073.

[43] Dolata, A.J., Dyzia, M. & Boczkal, S. (2016). Structure of interface between matrix alloy and reinforcement particles in Al/SiCp+ Cgp hybrid composites. Materials Today: Proceedings. 3(2), 235-239. DOI: 10.1016/j.matpr.2016.01.063.

[44] Keshavamurthy, R., Mageri, S., Raj, G., Naveenkumar, B., Kadakol, P.M. & Vasu, K. (2013). Microstructure and mechanical properties of Al7075-TiB2 in-situ composite. Research Journal of Material Sciences. 1(10), 6-10. ISSN 2320- 6055.

[45] Moustafa, S.F. (1995). Wear and wear mechanisms of Al-22% Si/A12O3f composite. Wear. 185(1-2), 189-195. DOI: 10.1016/0043-1648(95)06607-1.

Go to article

Authors and Affiliations

G.G. Sirata
1
ORCID: ORCID
K. Wacławiak
1
ORCID: ORCID
A.J. Dolata
1

  1. Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aluminium matrix composites offer a combination of properties such as lower weight, higher strength, higher wear resistance and many more. The stir casting process is easy to use, involves low cost and is suitable for mass production compared to other manufacturing processes. An in-depth look at recently manufactured aluminium matrix composites and their impact on particle distribution, porosity, wettability, microstructure and mechanical properties of Al matrix composites have all been studied in relation to stirring parameters. Several significant concerns have been raised about the sample’s poor wettability, porosity and particle distribution. Mechanical, thermal, and tribological properties are frequently studied in conjunction with variations in reinforcement proportion but few studies on the effect of stirrer blade design and parameters such as stirrer shape, dimensions and position have been reported. To study the effect of stirrer blade design on particle distribution, computational fluid dynamics is used by rese­archers. Reported multiphysics models were k-ε model and the k-ω model for simulation. It is necessary to analyse these models to determine which one best solves the real-time problem. Stirrer design selection and analysis of its effect on particle distribution using simulation, while taking underlying physics into account, can be well-thought-out as a future area of research in the widely adopted stir casting field.
Go to article

Authors and Affiliations

Chintan Morsiya
1 2
ORCID: ORCID
Shailesh Pandya
1
ORCID: ORCID

  1. Sardar Vallabhbhai National Institute of Technology, Department of Mechanical Engineering, Surat, Gujarat, India
  2. Research Scholar, Departme nt of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007,Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

An attempt has been made to synthesize the aluminium based ex-situ (Al-SiC) and in-situ (Al-TiB2) formed metal matrix composites with varying weight percentage of reinforcement contents such as 4wt.%, 6wt.% and 8wt.%. Synthesized composites were subjected to a cold extrusion process followed by heat treatment according to the ASTM B 918-01 standards. The mechanical properties of in-situ composites were evaluated as per the ASTM guidelines and compared with ex-situ formed composites and base metal properties. Superior properties were noticed in the in-situ formed composites and the mechanical properties such as yield strength, Ultimate tensile strength (UTS) and Hardness for both ex-situ and in-situ composites were found to increase with increasing the reinforcement addition. Cold extruded Al-8 wt.% SiC composite properties such as hardness, yield strength and UTS are 87 RB, 152 MPa, 216 MPa respectively. Whereas, for Al-8 wt.% TiB2 composite, the corresponding properties are 94 RB, 192 MPa, 293 MPa. The morphology of the composites is analysed by Optical and Scanning Electron Microscopic (SEM) whereas presence of reinforcement particles such SiC and TiB2 along with intermetallic phases Mg2Si and Al5FeSi are confirmed by EDX, XRD and Element Mapping analyses.
Go to article

Authors and Affiliations

B. Gobalakrishnan
1
C. Rajaravi
2
Gobikrishnan Udhayakumar
3
P.R. Lakshminarayanan
4

  1. CARE College of Engineering, Department of Mechanical Engineering, Trichy-620 009, Tamil Nadu, India
  2. Hindusthan College of Engineering and Technology, Coimbatore – 641 032, Tamilnadu, India
  3. Sona College of Technology, Department of Mechanical Engineering, Salem – 636 005, Tamil Nadu, India
  4. Annamalai University, Department of Manufacturing Engineering, Annamalai Nagar-608 002, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation Ni particles were added in varying weight fractions (0.5, 1.0 and 1.5%) to AA6061 alloy during stir casting. To prepare Al-Ni intermetallic reinforced Aluminium Metal Matrix Composites (Al MMCs), as-cast samples were subjected to T6 treatment (Solutionization at 550°C followed by ageing at 2,4,6,8 and 10 hours). Base alloy was also subjected to T6 treatment for comparison purpose. Hardness of the samples were obtained using Vickers hardness test. Samples in the peak aged (T6) condition were subjected to metallographic examination. Influence of Ni particles on the hardness and grain refinement was investigated. X-ray Diffraction analysis of the Ni added samples revealed the presence of Al-Ni intermetallic phase formation in the peak aged (T6) Condition. Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy analysis of composites in the peak aged (T6) condition were carried out to study the formation of the Al-Ni intermetallic phase. Effect of Al-Ni intermetallic phase on wear and friction behavior of the composite samples were studied and compared with that of the base alloy in the peak aged (T6) condition.
Go to article

Authors and Affiliations

J. Abuthakir
1
ORCID: ORCID
R. Subramanian
1
ORCID: ORCID
K. Somasundara Vinoth
2
ORCID: ORCID
G. Venkatesh
1
ORCID: ORCID
G. Suganya Priyadharshini
3
ORCID: ORCID
K. Krishnakumar
1
ORCID: ORCID

  1. Metallurgical Engineering, PSG College of Technology, India-641004
  2. Production Engineering, PSG College of Technology, India-641004
  3. Mechanical Engineering, Coimbatore Institute of Technology, India-641004

This page uses 'cookies'. Learn more