Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Impinging jets are one of the most effective techniques of heat transfer intensification, therefore they are continuously applied in various engineering areas. On the other hand, a numerical modelling of complex phenomena contributing to an overall heat transfer effect (and the Nusselt number value) is still not sufficient and suffers from lack of generalization. The extensive studies have been conducted to unify approach to the impinging jet modelling and construct the model (in Ansys Fluent software), which allows mirroring of the results. Presented work discusses differences in representation of impinging jet between various turbulence models based on the turbulence kinetic energy, momentum and energy budgets. It allows deep understanding of influence of geometrical and flow parameters on fluid mechanics phenomena interaction and final effect. The most significant results are connected with linking of Nusselt number distribution with analyzed budgets’ terms. Each term contributes to the distribution and cannot be omitted. Drawn conclusions explain the origin of reported in litera-ture differences and includes suggestions, how to evaluate the Nusselt number distribution results coming from various turbulence models. At this stage of research to have a complete image of relation between the particular quantities budgets and heat transfer effect it is suggested to consider also the turbulence kinetic energy dissipation budget, which will fil opened by this research gap.
Go to article

Authors and Affiliations

Sebastian Gurgul
1
Elzbieta Fornalik-Wajs
1

  1. AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland

This page uses 'cookies'. Learn more