Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 448
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Assessing the level of metallurgical and foundry technology in prehistoric times requires the examination of raw material finds, including elongated ingots, which served as semi-finished products ready for further processing. It is rare to find such raw material directly at production settlements, but Wicina in western Poland is an exception. During the Hallstatt period (800-450 BC), this area, situated along the middle Oder River, benefited from its favorable location in the heart of the Central European Urnfield cultures and developed networks for raw material exchange and bronze foundry production. Numerous remnants of casting activities, such as clay casting molds, casting systems, and raw materials, have been discovered at the Wicina settlement. This article aims to provide an archaeometallurgical interpretation of raw material management and utilization by prehistoric communities during the Early Iron Age. To achieve this, a collection of 31 ingots from the defensive settlement in Wicina, along with two contemporary deposits from Bieszków and Kumiałtowice, both found within a 20 km radius of the stronghold, were studied. Investigations were conducted using a range of methods, including optical microscopy(OM), scanning electron microscopy (SE M), energy-dispersive X-ray spectroscopy (SE M-EDS), X-ray fluorescence spectroscopy (ED-XRF), powder X-ray diffraction (PXRD), AAS and ICP-OES spectrometer. The significance of ingots is examined in the context of increasing social complexity and the rising popularity of bronze products, which necessitated diversified production and a demand for raw materials with different properties and, consequently, different chemical compositions.
Przejdź do artykułu

Autorzy i Afiliacje

A. Garbacz-Klempka
1
ORCID: ORCID
K. Dzięgielewski
2
ORCID: ORCID
M. Wardas-Lasoń
3
ORCID: ORCID

  1. AGH University Of Krakow, Faculty of Foundry Engineering, Historical Layers Research Centre, ul. Reymonta 23, 30-059 Krakow, Poland
  2. Jagiellonian University, Institute of Archaeology, ul. Gołębia 11, 31-007 Krakow, Poland
  3. AGH University Of Krakow, Faculty of Geology, Geophysics And Environmental Protection, Historical Layers Research Centre, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstrakt

The paper, which is a summary and supplement of previous works and research, presents the results of numerical and physical modeling of the GX2CrNiMoCuN25-6-3 duplex cast steel thin-walled castings production. To obtain thin-walled castings with wall in the thinnest place even below 1 mm was used the centrifugal casting technology and gravity casting. The analyzed technology (centrifugal casting) enables making elements with high surface quality with reduced consumption of batch materials and, as a result, reducing the costs of making a unitary casting. The idea behind the production of cast steel with the use of centrifugal technology was to find a remedy for the problems associated with unsatisfactory castability of the tested alloy.

The technological evaluation of the cast construction was carried out using the Nova Flow & Solid CV 4.3r8 software. Numerical simulations of crystallization and cooling were carried out for a casting without a gating system and sinkhead located in a mold in accordance with the pouring position. It was assumed that the analyzed cast will be made in the sand form with dimensions 250×250×120 mm.

Przejdź do artykułu

Autorzy i Afiliacje

G. Stradomski
M. Nadolski
ORCID: ORCID
A. Zyska
B. Kania
D. Rydz
ORCID: ORCID

Abstrakt

Consecutive casting of bimetallic applies consecutive sequences of pouring of two materials into a sand mold. The outer ring is made of NiHard1, whereas the inner ring is made of nodular cast iron. To enable a consecutive sequence of pouring, an interface plate made of low carbon steel was inserted into the mold and separated the two cavities. After pouring the inner material at the predetermined temperature and the interface had reached the desired temperature, the NiHard1 liquid was then poured immediately into the mold. This study determines the pouring temperature of nodular cast iron and the temperature of the interface plate at which the pouring of white cast iron into the mold should be done. Flushing the interface plate for 2 seconds by flowing nodular cast iron liquid as inner material generated a diffusion bonding between the inner ring and interface plate at pouring temperatures of 1350 °C, 1380 °C, and 1410 °C. The interface was heated up to a maximum temperature of 1242 °C, 1260 °C, and 1280 °C respectively. The subsequent pouring of white cast iron into the mold to form the outer ring at the interface temperature of 1000 °C did not produce a sufficient diffusion bonding. Pouring the outer ring at the temperature of 1430°C and at the interface plate temperature of 1125 °C produced a sufficient diffusion bonding. The presence of Fe3O2 oxide on the outer surface of the interface material immediately after the interface was heated above 900 ⁰C has been identified. Good metallurgical bonding was achieved by pouring the inner ring at the temperature of 1380°C, interface temperature of 1125 °C and then followed by pouring of the outer ring at 1430⁰C and flushing time of 7 seconds.

Przejdź do artykułu

Autorzy i Afiliacje

W. Purwadi
B. Bandanadjaja
D. Idamayanti
N. Lilansa
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents research carried out during the development of new technology for the production of heavy-weight castings of counterweights. The research concerns the procedure of inoculation gray cast iron with flake graphite and indicates guidelines for the development of new technology for obtaining inoculated cast iron for industrial conditions.
The research was conducted in order to verify the possibility of producing large size or heavy-weight castings of plates in a vertical arrangement. The aim is to evenly distribute graphite in the structure of cast iron and thus reduce the volumetric fraction of type D graphite. The tests were carried out using the ProCast program, which was used to determine the reference chemical composition, and the inoculation procedure was carried out with the use of three different inoculants. The work was carried out in project no. RPMP.01.02.01-12-0055 / 18 under the Regional Operational Program of the Lesser Poland Voivodeship in Krakow (Poland).
Przejdź do artykułu

Bibliografia

[1] Benedetti, M., Torresani, E., Fontanari, V. & Lusuardi, D. (2017). Fatigue and fracture resistance of heavy-section ferritic ductile cast iron. Metals. 7(3), 88.
[2] Dorula, J., Kopyciński, D., Guzik, E., Szczęsny, A. & Gurgul, D. (2021). The influence of undercooling ΔT on the structure and tensile strength of grey cast iron. Materials. 14(21), 6682.
[3] Wang, Q., Cheng, G. & Hou, Y. (2020). Effect of titanium addition on as-cast structure and high-temperature tensile property of 20Cr-8Ni stainless steel for heavy castings. Metals. 10(4), 529.
[4] Wang, Q., Chen, S. & Rong, L. (2020). -Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting. Metallurgical and Materials Transactions A. 51, 2998-3008.
[5] Kalandyk, B., Zapała, R., Sobula, S., Górny, M. & Boroń, Ł. (2014) Characteristics of low nickel ferritic-austenitic corrosion resistant cast steel. Metalurgija-Metallurgy. 53(4), 613-616.
[6] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66.
[7] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[8] Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168.
[9] Celis, M., Domengès, B., Hug, E. & Lacaze, J. (2018). Analysis of nuclei in a heavy-section nodular iron casting. Materials Science Forum. 925, 173-180.
[10] Kopyciński, D., Siekaniec, D., Szczęsny, A., Sokolnicki, M. & Nowak, A. (2016). The Althoff-Radtke test adapter for high chromium cast iron. Archives of Foundry Engineering. 16(4), 74-77.
[11] Szczęsny, A., Kopyciński, D., Guzik, E. Soból, G., Piotrowski, K., Bednarczyk, P. & Paul, W. (2020). Shaping of ductile cast iron dedicated for slag ladle. Acta Metallurgica Slovaca. 26, 74-77. https://doi.org/10.36547/ams.26.2.312
[12] Mourad, M.M. & El-Hadad, S. (2015). Effect of processing parameters on the mechanical properties of heavy section ductile iron. Journal of Metallurgy. 2015, 1-11.
[13] Foglio, E., Gelfi, M., Pola, A. & Lusuardi, D. (2017). Effect of shrinkage porosity and degenerated graphite on fatigue crack initiation in ductile cast iron. Key Engineering Materials. 754, 95-98.
[14] Kavicka, F., Sekanina, B., Stetina, J., Stransky, K., Gontarev, V. & Dobrovska, J. (2009). Numerical optimization of the method of cooling of a massive casting of ductile cast-iron. Materials and Technology. 43, 73-78.

Przejdź do artykułu

Autorzy i Afiliacje

A. Szczęsny
1
ORCID: ORCID
D. Kopyciński
1
ORCID: ORCID
Edward Guzik
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Foundry, ul. Reymonta 23, 30-059 Kraków, Polska
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The objective of this work is to gain a deeper understanding of the separation effects and particle movement during filtration of non-metallic inclusions in aluminum casting on a macroscopic level. To understand particle movement, complex simulations are performed using Flow 3D. One focus is the influence of the filter position in the casting system with regard to filtration efficiency. For this purpose, a real filter geometry is scanned with computed tomography (CT) and integrated into the simulation as an STL file. This allows the filtration processes of particles to be represented as realistically as possible. The models provide a look inside the casting system and the flow conditions before, in, and after the filter, which cannot be mapped in real casting tests. In the second part of this work, the casting models used in the simulation are replicated and cast in real casting trials. In order to gain further knowledge about filtration and particle movement, non-metallic particles are added to the melt and then separated by a filter. These particles are then detected in the filter by metallographic analysis. The numerical simulations of particle movement in an aluminum melt during filtration, give predictions in reasonable agreement with experimental measurements.
Przejdź do artykułu

Bibliografia

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang, Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346-355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G. (2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813-833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
Przejdź do artykułu

Autorzy i Afiliacje

B. Baumann
1
A. Keßler
1
E. Hoppach
1
G. Wolf
1
M. Szucki
1
ORCID: ORCID
O. Hilger
2

  1. Foundry Institute, Technische Universität Bergakademie Freiberg, 4 Bernhard-von-Cotta-Str., 09599 Freiberg, Germany
  2. Simcast GmbH, Westring 401, 42329 Wuppertal, Germany

Abstrakt

This paper presents a new stand for studying the linear shrinkage kinetics of foundry alloys. The stand is equipped with a laser displacement sensor. Thanks to this arrangement, the measurement is of a contactless nature. This solution allows for the elimination of errors which occur in measurements made using intermediary elements (steel rods). The supposition of the expansion (shrinkage) of the sample and the expansion of the heated rod lead to the distortion of the image of the actual dimensional changes of the studied sample. A series of studies of foundry alloys conducted using the new stand allowed a new image of shrinkage kinetics to be obtained, in particular regarding cast iron. The authors introduce in the study methodology a real-time measurement of two linked quantities; shrinkage (the displacement of the free end of the sample) and temperature in the surface layer of the sample casting. This generates not only a classic image of shrinkage (S) understood as S = f (t), but also the view S = f (T). The latter correlation, developed based on results obtained using the contactless method, provide a new, so far poorly known image of the course of shrinkage in foundry alloys, especially cast iron with graphite in the structure. The study made use of hypo- and hypereutectic cast iron in order to generate an image of the differences which occur in the kinetics of shrinkage (as well as in pre-shrinkage expansion - expansion occurs during solidification).

Przejdź do artykułu

Autorzy i Afiliacje

J. Zych
ORCID: ORCID
T. Snopkiewicz

Abstrakt

The temperature of liquid steel for continuous casting determines the casting speed and cooling conditions. The failure to meet the required casting process parameters may result in obtaining slabs of inconsistent quality. Numerical methods allow for real processes to be modelled. There are professional computer programs on the market, so the results of the simulations allow us to understand the processes that occur during casting and solidification of a slab. The study attempts to evaluate the impact of the superheat temperature on the slab structure based on the industrial operating parameters of the continuous casting machine.

Przejdź do artykułu

Autorzy i Afiliacje

P. Drożdż
ORCID: ORCID

Abstrakt

Metallic bearing alloys have different types, most of which are tin (Babbitt) or bronze based. Bronze bearings are used at heavy duty conditions. The goal of this research is an investigation on the effect of cooling rate and pouring temperature (two important factors in casting production) on the Brinell hardness and pin-on-disc wear resistance (two important properties in bearing applications) of bronze SAE660. The melt had prepared by induction furnace. Then, it had poured in sand mold in four different casting conditions, including pouring temperatures of 950 oC and 1200 oC, and cooling with water and air. Finally, the microstructure, hardness and wear resistance of the SAE660 had investigated. The results indicated that if the maximum hardness, along with the minimum weight loss due to wear (or maximum wear resistance) is required; the contents of intermetallic compounds, lead phase and the solid solution phase should be more. In this way, the samples which are cooled in air and poured at 950 oC have the high hardness and the lowest weight loss.
Przejdź do artykułu

Autorzy i Afiliacje

S.E. Vahdat
S. Karimifer

Abstrakt

This article discusses issues related to continuous casting of brass. The tested material was CuZn39Pb2 brass with the use of continuous casting and different parameters of the process. The position consists of a melting furnace with a graphite refining pot of about 4000 cm3 chuting capacity, a graphite crystallizer of 9,5 mm nominal diameter, a primary and secondary cooling system and an extracting system as well. The analysis was carried out in terms of technological parameters of the process and type of charge. Highlighted: feedrate ingot, number of stops, and technological temperatures. The surface quality of the obtained ingots and the structure were analyzed. The most favorable conditions were indicated and technological recommendations indicated. They have been distinguished for ingots for plasticity and other technologies. Favorable casting conditions are low feed and low temperature. Due to the presence of impurities coming from the charge it is disadvantageous to have Ni greater than 0.053% by mass, and Fe more than 0.075% by mass. It is recommended to maintain a high zinc content in the melt which is associated with non-overheating of the metal during casting and earlier melting.

Przejdź do artykułu

Autorzy i Afiliacje

P. Kwaśniewski
K. Najman
W. Wołczyński
A.W. Bydałek
P. Schlafka
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents results of tests carried out on ausferrite carbide matrix alloyed ductile cast iron. The ausferrite was obtained via addition of Cu and Mo alloying elements. This eliminated heat treatment from the alloy production cycle. The article presents results of tests of the quality of the obtained material. Emphasis was put on metallographic analysis using light and scanning microscopy. Works also included chemical composition tests and EDS analysis. Strength tests were executed in an accredited laboratory. It is possible to create a raw ausferrite carbide matrix without subjecting an alloy to heat treatment. However, it turned out that quality parameters of cast iron were insufficient. The obtained material hardness was 515 HB, while Rm strength and A5 ductility were very low. The low tensile strength of the analyzed alloy resulted from the presence of degenerate graphite secretion (of flake or vermicular shape) in the cast iron. The tests also demonstrated that the alloy was prone to shrinkage-related porosity, which further weakened the material. Alloys made of alloyed ductile iron of ausferrite matrix micro-structure are very attractive due to elimination of the heat treatment process. However, their production process and chemical composition must be optimized.
Przejdź do artykułu

Bibliografia

[1] Ahmed, M., Riedel, E., Kovalko, M., Volochko, A., Bähr, R. & Nofal, A. (2022). Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field. International Journal of Metalcasting. 16(3), 1463-1477. DOI: 10.1007/s40962-021-00683-8.
[2] Benam, A.S. (2015). Effect of alloying elements on austempered ductile iron (ADI) properties and its process: review. China Foundry. 12(1), 54-70.
[3] Uyar, A., Sahin, O., Nalcaci, B., & Kilicli. V. (2022). Effect of austempering times on the microstructures and mechanical properties of dual-matrix structure austempered ductile iron (DMS-ADI). International Journal of Metalcasting. 16(1), 407-418. DOI: 10.1007/s40962-021-00617-4.
[4] Lefevre, J. & Hayrynen. K.L. (2013). Austempered materials for powertrain applications. Journal of Materials Engineering and Performance. 22(7), 1914-1922. DOI: 10.1007/s11665-013-0557-4.
[5] Tyrała, E., Górny, M., Kawalec, M., Muszyńska, A. & Lopez, H.F. (2019). Evaluation of volume fraction of austenite in austempering process of austempered ductile iron. Metals. 9(8), 1-10. DOI: 10.3390/met9080893.
[6] Fraś, E., Górny, M., Tyrała, E. & Lopez. H. (2012). Effect of nodule count on austenitising and austempering kinetics of ductile iron castings and mechanical properties of thin walled iron castings. Materials Science and Technology. 28(12), 1391-1396. DOI: 10.1179/1743284712Y.0000000088.
[7] Ibrahim, M.M., Negm, A.M., Mohamed, S.S. & Ibrahim. K.M. (2022). Fatigue properties and simulation of thin wall ADI and IADI castings. International Journal of Metalcasting. 16(4), 1693-1708. DOI: 10.1007/s40962-021-00711-7.
[8] Gumienny, G. & Kacprzyk. B. (2018). Copper in ausferritic compacted graphite iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[9] Abdullah, B., Alias, S. K., Jaffar, A., Rashid, A.A., Ramli, A. (2010). Mechanical properties and microstructure analysis of 0.5% niobium alloyed ductile iron under austempered process in salt bath treatment. International Conference on Mechanical and Electrical Technology, (pp. 610-614). DOI: 10.1109/ICMET.2010.5598431.
[10] Akinribide, O.J., Ogundare, O.D., Oluwafemi, O.M., Ebisike, K., Nageri, A.K., Akinwamide, S.O., Gamaoun, F. & Olubambi, P.A. (2022). A review on heat treatment of cast iron: phase evolution and mechanical characterization. Materials. 15(20), 1-38. DOI: 10.3390/ma15207109. [11] Samaddar, S., Das, T., Chowdhury, A.K., & Singh, M. (2018). Manufacturing of engineering components with Austempered ductile iron - A review. Materials Today: Proceedings. 5(11), 2561525624. DOI: 10.1016/j.matpr.2018.11.001.
[12] Stachowiak, A., Wieczorek, A.N., Nuckowski, P., Staszuk, M. & Kowalski, M. (2022). Effect of spheroidal ausferritic cast iron structure on tribocorrosion resistance. Tribology International. 173. DOI: 10.1016/j.triboint.2022.107688.
[13] Myszka, D. & Wieczorek, A. (2015). Effect of phenomena accompanying wear in dry corundum abrasive on the properties and microstructure of austempered ductile iron with different chemical composition. Archives of Metallurgy and Materials. 60(1), 483-490. DOI: 10.1515/amm-2015-0078.
[14] Pimentel, A.S.O., Guesser, W.L., Portella, P.D., Woydt, M. & Burbank. J. (2019). Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium. Materials Performance and Characterization. 8(1), 402-418. DOI: 10.1520/MPC20180188.
[15] Machado, H.D., Aristizabal-Sierra, R., Garcia-Mateo, C. & Toda-Caraballo, I. (2020). Effect of the starting microstructure in the formation of austenite at the intercritical range in ductile iron alloyed with nickel and copper. International Journal of Metalcasting. 14(3), 836-845. DOI: 10.1007/s40962-020-00450-1.
[16] Janowak, J.F. & Gundlach. R.B. (1985). Approaching austempered ductile iron properties by controlled cooling in the foundry. Journal of Heat Treating. 4(1), 25-31. DOI: 10.1007/BF02835486.
[17] Gumienny, G. & Kurowska, B. (2018). Alternative technology of obtaining ausferrite in the matrix of spheroidal cast iron. Transactions of the Foundry Research Institute. 58(1), 13-29. DOI: 10.7356/iod.2018.02.
[18] Gumienny, G., Kacprzyk, B., Mrzygłód, B. & Regulski. K. (2022). Data-driven model selection for compacted graphite iron microstructure prediction. Coatings. 12(11). DOI: 10.3390/coatings12111676.
[19] Tenaglia, N.E., Pedro, D.I., Boeri, R.E. & Basso. A.D. (2020). Influence of silicon content on mechanical properties of IADI obtained from as cast microstructures. International Journal of Cast Metals Research. 33(2-3), 72-79. DOI: 10.1080/13640461.2020.1756082.
[20] Méndez, S., De La Torre, U., González-Martínez, R. & Súarez. R. (2017). Advanced properties of ausferritic ductile iron obtained in as-cast conditions. International Journal of Metalcasting. 11(1), 116-122. DOI: 10.1007/s40962-016-0092-9.
[21] Kashani, S.M. & Boutorabi. S. (2009). As-cast acicular ductile aluminum cast iron. Journal of Iron and Steel Research International. 16(6), 23-28. DOI: 10.1016/S1006-706X(10)60022-2.
[22] Ferry, M. & Xu. W. (2004). Microstructural and crystallographic features of ausferrite in as-cast gray iron. Materials Characterization. 53(1), 43-49. DOI: 10.1016/j.matchar.2004.07.008.
[23] Stawarz, M. & Nuckowski. P. M. (2022). Corrosion behavior of simo cast iron under controlled conditions. Materials. 15(9), 1-14. DOI: 10.3390/ma15093225.
[24] Stawarz, M. (2018). Crystallization process of silicon molybdenum cast iron. Archives of Foundry Engineering. 18(2), 100-104. DOI: 10.24425/122509.
[25] Vaško, A., Belan, J. & Tillová. E. (2018). Effect of copper and molybdenum on microstructure and fatigue properties of nodular cast irons. Manufacturing Technology. 18(6), 1049-1052. DOI: 10.21062/ujep/222.2018/a/1213-2489/mt/18/6/1048.
[26] Silman, G.I., Kamynin, V.V. & Tarasov. A.A. (2003). Effect of copper on structure formation in cast iron. Metal Science and Heat Treatment. 45(7-8), 254-258. DOI: 10.1023/A:1027320116132.
[27] Gumienny, G., Kacprzyk, B. & Gawroński, J. (2017). Effect of copper on the crystallization process, microstructure and selected properties of CGI. Archives of Foundry Engineering. 17(1), 51-56. DOI: 10.1515/afe-2017-0010.
[28] Vaško, A. (2017). Fatigue properties of nodular cast iron at low frequency cyclic loading. Archives of Metallurgy and Materials. 62(4), 2205-2210. DOI: 10.1515/amm-2017-0325.
[29] Stawarz, M. & Nuckowski. P.M. (2020). Effect of Mo addition on the chemical corrosion process of SiMo cast iron. Materials. 13(7), 1-10. DOI: 10.3390/ma13071745.
[30] Stawarz, M. (2017). SiMo ductile iron crystallization process. Archives of Foundry Engineering. 17(1), 147-152. DOI: 10.1515/afe-2017-0027.
[31] Zych, J., Myszka, M. & Kaźnica, N. (2019). Control of selected properties of „Vari-morph” (VM) cast iron by means of the graphite form influence, described by the mean shape indicator. Archives of Foundry Engineering. 19(3), 43-48. DOI: 10.24425/afe.2019.127137.

Przejdź do artykułu

Autorzy i Afiliacje

M. Stawarz
1
ORCID: ORCID
M. Lenert
1
K. Piasecki
1
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7 St., 44-100 Gliwice, Poland

Abstrakt

This article is a description of the progress of research and development in the area of massive large-scale castings - slag ladles implemented in cooperation with the Faculty of Foundry Engineering of UST in Krakow. Slag ladles are the one of the major castings that has been developed by the Krakodlew (massive castings foundry) for many years. Quality requirements are constantly increasing in relation to the slag ladles. Slag ladles are an integral tool in the logistics of enterprises in the metallurgical industry in the process of well-organized slag management and other by-products and input materials. The need to increase the volume of slag ladles is still growing. Metallurgical production is expected to be achieved in Poland by 2022 at the level of 9.4 million Mg/year for the baseline scenario - 2016 - 9 million Mg/year. This article describes the research work carried out to date in the field of technology for the production of massive slag ladles of ductile cast iron and cast steel.

Przejdź do artykułu

Autorzy i Afiliacje

M. Paszkiewicz
Edward Guzik
ORCID: ORCID
D. Kopyciński
ORCID: ORCID
Barbara Kalandyk
ORCID: ORCID
A. Burbelko
ORCID: ORCID
D. Gurgul
S. Sobula
ORCID: ORCID
A. Ziółko
K. Piotrowski
ORCID: ORCID
P. Bednarczyk
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This article presents changes of the total casting production volumes and of the production of castings made from basic casting alloys in Poland, in Europe and worldwide in years 2001–2021. Analogous casting production parameters were compared for Poland, Europe and countries being the leading European and global manufacturers in years 2001, 2011 and 2021. The leading casting manufacturers in Europe (with the manufacturing volume exceeding 1 million tons in the mentioned years) include Germany, Italy, the Ukraine, France and Spain. For years, the largest casting manufacturer worldwide has been China. In 2001–2021, global casting production increased from ca. 68 million tons to ca. 97 million tons (i.e. by ca. 42%), whereas the European one decreased from ca. 17 million tons to ca. 12 million tons (i.e. by close to 30%). In the analyzed period, the Polish production volume grew from ca. 0.75 million tons to ca. 0.88 million tons (i.e. by ca. 17%). The presented data reveal the decreasing importance of gray cast iron and cast steel and the increasing one of ductile cast iron and aluminum alloys. However, the Polish average annual growth rate for aluminum alloy casting production was 10.3%, whereas the global one was 3% and the European one 0.7%.
Przejdź do artykułu

Bibliografia


[1] Patalas-Maliszewska, J. Topczak, M. & Kłos, S. (2020). The level of the additive manufacturing technology use in polish metal and automotive manufacturing enterprises. Applied Sciences. 10(3), 735, 1-20. DOI:10.3390/app10030735.

[2] Kampa, A. & Gołda, G. (2018). Modelling and simulation method for production process automation in steel casting foundry. Archives of Foundry Engineering. 18(1), 47-52. DOI: 10.24425/118810.

[3] Gruzman, V.M. (2020). Foundry production digitalization. Materials Science and Engineering. 966(1), 012127, 1-6. DOI:10.1088/1757-899X/966/1/012127.

[4] Scharfa, S., Sander, B., Kujath, M., Richter, H., Eric Riedelb, E., Stein, H., & Felde, J. (2021). FOUNDRY 4.0: An innovative technology for sustainable and flexible process design in foundries. Procedia CIRP. 98 73-78. https://doi.org/10.1016/j.procir.2021.01.008.

[5] Odlewnie Polskie S.A. (2024). Prace badawczo-rozwojowe. Retrieved April 15, 2024, from https://odlewniepolskie.pl/innowacje-i-nauka/prace-badawczo-rozwojowe/.

[6] Odlewnie Polskie S.A. (2024). Report on the operations of Spółka Akcyjna Odlewnie Polskie with its registered office in Starachowice in 2021. Retrieved April 20, 2022, from: https://odlewniepolskie.pl/.

[7] Czerepak, M. & Piątkowski, J. (2023). Casting of combustion engine pistons before and now on the example of FM Gorzyce. Archives of Foundry Engineering. 23(2), 58-65. DOI: 10.24425/afe.2023.144296.

[8] Soiński, M.S., Skurka, K., Jakubus, A. & Kordas, P. (2015). Structure of foundry production in the world and in Poland over the 1974-2013 period. Archives of Foundry Engineering. 15(spec.2), 69-76.

[9] Sobczak, J. & Dudek, P. (2021). The current state of foundry in the context of the world economy. Przegląd Odlewnictwa. 11-12, 594-607. from https://kimim.pan.pl/files/Sobczak_Dudek.pdf. (in Polish).

[10] Soiński, M.S., Skurka, K., Jakubus, A. (2015). Changes in the production of castings in Poland in the past half century in comparison with world trends. In: Selected problems of process technologies in the industry. Częstochowa. Eds. Faculty of Production Engineering and Materials Technology of the Częstochowa University of Technology, 2015. Monograph. ISBN: 978-83-63989-30-9, pp.71-79. (in Polish).

[11] Industry Outlook: Sales Expected to Keep Growing. Modern Casting, (January 2023), 33–35.

[12] 36th Census of World Casting Production —2001. Modern Casting, (December 2002), 22-24.

[13] Know Your Competition 37th Census of World Casting Production —2002. Modern Casting, (December 2003), 23-25.

[14] 38th Census of World Casting Production —2003. Modern Casting, (December 2004), 25-27.

[15] 39th Census of World Casting Production —2004. Modern Casting, (December 2005), 27-29.

[16] 40th Census of World Casting Production —2005. Modern Casting, (December 2006), 28-31.

[17] 41st Census of World Casting Production —2006. Modern Casting, (December 2007), 22-25.

[18] 42nd Census of World Casting Production —2007. Modern Casting, (December 2008), 24-27.

[19] 43rd Census of World Casting Production —2008. Modern Casting, (December 2009), 17-21.

[20] 44th Census of World Casting Production. Modern Casting, (December 2010), 23-27.

[21] 45th Census of World Casting Production. Modern Casting, (December 2011), 16-19.

[22] 46th Census of World Casting Production. Modern Casting, (December 2012), 25-29.

[23] 47th Census of World Casting Production. Dividing up the Global Market. Modern Casting, (December 2013), 18-23.

[24] 48th Census of World Casting Production. Steady Growth in Global Output. Modern Casting, (December 2014), 17-21.

[25] 49th Census of World Casting Production. Modest Growth in Worldwide Casting Market. Modern Casting, (December 2015), 26-31.

[26] 50th Census of World Casting Production. Global Casting Production Stagnant. Modern Casting, (December 2016), 25-29.

[27] Census of World Casting Production. Global Casting Production Growth Stalls. Modern Casting, (December 2017), 24-28.

[28] Census of World Casting Production. Global Casting Production Expands. Modern Casting, (December 2018), 23-26.

[29] Census of World Casting Production. Total Casting Tons. Hits 112 Million. Modern Casting, (December 2019), 22-25.

[30] Census of World Casting Production Total Casting Tons Dip in 2019. Modern Casting, (January 2021), 28-30.

[31] Census of World Casting Production Fewer Castings Made in 2020. Modern Casting, (December 2021), 26-28.

[32] Report CAEF — The European Foundry Association 2021. Retrieved April 20, 2022, from https://www.caef.eu/downloads-links/.

[33] Soiński, M.S. & Jakubus, A. (2021). The leading role of aluminium in the growing production of castings made of the non-ferrous alloys. Archives of Foundry Engineering. 21(3), 33-42. DOI: 10.24425/afe.2021.136110.

[34] Gajdzik, B. & Wolniak, R. (2021). Influence of the COVID-19 crisis on steel production in Poland compared to the financial crisis of 2009 and to boom periods in the market. Resources. 10(1), 4, 1-17. DOI: 10.3390/resources10010004.

[35] Rokicki, T., Bórawski, P. & Szeberenyi, A. (2023). The impact of the 2020–2022 crises on EU countries’ independence from energy imports, particularly from Russia. Energies. 16(18), 6629, 1-26. DOI: 10.3390/en16186629

Przejdź do artykułu

Autorzy i Afiliacje

M.S. Soiński
1
ORCID: ORCID
A. Jakubus
1
ORCID: ORCID

  1. Jakub from Paradyz Academy in Gorzow Wielkopolski, 25 Teatralna St., 66-400 Gorzow Wielkopolski, Poland

Abstrakt

The work presents the results of the investigations of the effect of the nitrogen (N2) refining time „τraf” and the gas output on the course of

the crystallization process, the microstructure and the gassing degree of silumin 226 used for pressure casting. The refinement of the

examined silumin was performed with the use of a device with a rotating head. The crystallization process was examined by way of

thermal analysis and derivative analysis TDA. The performed examinations showed that the prolongation of the N2 refining time causes

a significant rise of the temperature of the crystallization end of the silumin, „tL”, as well as a decrease of its gassing degree, „Z”. An

increase of the nitrogen output initially causes an increase of the temperature „tL” and a drop of the gassing degree „Z”, which reach their

maximal values with the output of 20 dm3

/min. Further increase of the output causes a decrease of the value „tL” and an increase of „Z”.

The examined technological factors of the refining process did not cause any significant changes in the microstructure of silumin 226.

Przejdź do artykułu

Autorzy i Afiliacje

T. Pacyniak
G. Gumienny
T. Szymczak

Abstrakt

The work presents the effect of strontium and antimony modification on the microstructure and mechanical properties of 226 silumin casts.

The performed research demonstrated that strontium causes high refinement of silicon precipitations in the eutectic present in the microstructure

of the examined silumin and it significantly affects the morphology of eutectic silicon from the lamellar to the fibrous one. Sr

modification also causes an increase of: the tensile strength „Rm” by 12%; the proof stress „Rp0,2” by 5%; the unit elongation „A” by 36%

and the hardness HB by 13%. Antimony did not cause a change in the microstructure of the silumin, yet it caused an increase in Rm and

HB by 5%, in Rp0,2 by 7% and in A by 4%.

Przejdź do artykułu

Autorzy i Afiliacje

T. Pacyniak
G. Gumienny
T. Szymczak

Abstrakt

The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90%) in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top.
Przejdź do artykułu

Autorzy i Afiliacje

P. Just
T. Pacyniak
R. Kaczorowski

Abstrakt

Energy conservation is an important step to overcome the energy crisis and prevent environmental pollution. Casting industry is a major consumer of energy among all the industries. The distribution of electrical energy consumed in all the departments of the foundry is presented. Nearly 70% of the energy is consumed especially in the melting department alone. Production of casting involves number of process variables. Even though lot of efforts has been taken to prevent defects, it occurs in the casting due to variables present in the process. This paper focuses the energy saving by improving the casting yield and by reducing the rejections. Furthermore an analysis is made on power consumption for melting in the induction furnace to produce defective castings and improvement in the casting yield. The energy consumed to produce defective castings in all other departments is also presented. This analysis reveals that without any further investment in the foundry, it is possible to save 3248.15 kWh of energy by reducing the rejections as well as by improving the casting yield. The redesign of the feeding system and the reduced major rejection shrinkage in the body casting improved the casting yield from 56% to 72% and also the effective yield from 12.89% to 66.80%.

Przejdź do artykułu

Autorzy i Afiliacje

B. Chokkalingam
V. Raja
M. Dhineshkumar
M. Priya
R. Immanual

Abstrakt

The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process,

considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of

ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured

with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty.

Przejdź do artykułu

Autorzy i Afiliacje

A. Karwiński
R. Biernacki
A. Soroczyński
R. Haratym

Abstrakt

A significant part of the knowledge used in the production processes is represented with natural language. Yet, the use of that knowledge

in computer-assisted decision-making requires the application of appropriate formal and development tools. An interesting possibility is

created by the use of an ontology that is understandable both for humans and for the computer. This paper presents a proposal for

structuring the information about the foundry processes, based on the definition of ontology adapted to the physical structure of the

ongoing technological operations that make up the process of producing castings.

Przejdź do artykułu

Autorzy i Afiliacje

Z. Górny
D. Wilk-Kołodziejczyk
A. Smolarek-Grzyb

Abstrakt

Castability of thin-walled castings is sensitive to variation in casting parameters. The variation in casting parameters can lead to undesired casting conditions which result in defect formation. Variation in rejection rate due to casting defect from one batch to other is common problem in foundries and the cause of this variation usually remain unknown due to complexity of the process. In this work, variation in casting parameters resulting from human involvement in the process is investigated. Casting practices of different groups of casting operators were evaluated and resulting variations in casting parameters were discussed. The effect of these variations was evaluated by comparing the rejection statistics for each group. In order to minimize process variation, optimized casting practices were implemented by developing specific process instructions for the operators. The significance of variation in casting parameters in terms of their impact on foundry rejections was evaluated by comparing the number of rejected components before and after implementation of optimized casting practices. It was concluded that variation in casting parameters due to variation in casting practices of different groups has significant impact on casting quality. Variation in mould temperature, melt temperature and pouring rate due to variation in handling time and practice resulted in varying quality of component from one batch to other. By implementing the optimized casting instruction, both quality and process reliability were improved significantly.

Przejdź do artykułu

Autorzy i Afiliacje

M. Raza
P. Silva
M. Irwin
B. Fagerström
A.E.W. Jarfors

Abstrakt

Internal casting defects that are detected by radiography may also be detected by ultrasonic method. Ultrasonic testing allows investigation of the cross-sectional area of a casting, it is considered to be a volumetric inspection method. The high frequency acoustic energy travels through the casting until it hits the opposite surface or an interface or defect. The interface or defect reflects portions of the energy, which are collected in a receiving unit and displayed for the analyst to view. The pattern of the energy deflection can indicate internal defect. Ultrasonic casting testing is very complicated in practice. The complications are mainly due to the coarse-grain structure of the casting that causes a high ultrasound attenuation. High attenuation then makes it impossible to test the entire volume of material. This article is focused on measurement of attenuation, the effect of probe frequency on attenuation and testing results.

Przejdź do artykułu

Autorzy i Afiliacje

R. Koňár
M. Mičian

Abstrakt

In contemporary high-pressure die casting foundries, the mastery of each sequence in the production cycle is more and more important. In the paper, an example of virtual analysis of gearbox casting from Al alloy will be presented. It includes a large variety of parameters, as follows: choosing of appropriate foundry technology, calculation of computer simulation of casting process which takes into account the filling process of cold chamber and filling of cavity, model description of three phases in high-pressure die casting, flow of molten metal, solidification, formation of stress and deformations. Additionally, the optimization of cooling and heating systems will be compared with calculated volume defects, dimensions of castings and their deformations with experimentally obtained values.

Przejdź do artykułu

Autorzy i Afiliacje

I. Peter
M. Rosso

Abstrakt

The casting workshop was discovered with numerous artifacts, confirming the existence of the manufacturing process of metal ornaments using ceramic molds and investment casting technology in Lower Silesia (Poland) in 7-6 BC. The research has yielded significant technological information about the bronze casting field, especially the alloys that were used and the artifacts that were made from them. Based on the analyses, the model alloys were experimentally reconstructed. Taking advantage of the computer-modeling method, a geometric visualization of the bronze bracelets was performed; subsequently, we simulated pouring liquid metal in the ceramic molds and observed the alloy solidification. These steps made it possible to better understand the casting processes from the perspective of the mold technology as well as the melting and casting of alloys.

Przejdź do artykułu

Autorzy i Afiliacje

A. Garbacz-Klempka
J.S. Suchy
Z. Kwak
P. Długosz
T. Stolarczyk

Abstrakt

Defects affect the properties and behavior of the casting during its service life. Since the defects can occur due to different reasons, they

must be correctly identified and categorized, to enable applying the appropriate remedial measures. several different approaches for

categorizing casting defects have been proposed in technical literature. They mainly rely on physical description, location, and formation

of defects. There is a need for a systematic approach for classifying investment casting defects, considering appropriate attributes such as

their size, location, identification stage, inspection method, consistency, appearance of defects. A systematic approach for categorization of

investment casting defects considering multiple attributes: detection stage, size, shape, appearance, location, consistency and severity of

occurrence. Information about the relevant attributes of major defects encountered in investment casting process has been collected from

an industrial foundry. This has been implemented in a cloud-based system to make the system freely and widely accessible.

Przejdź do artykułu

Autorzy i Afiliacje

Amit V. Sata

Abstrakt

The article presents the role of the ceramic layered moulds used in the investment casting method with new (certified) and recycled material from ceramic moulds (CM) after casting process. The materials that were obtained are mainly aluminosilicates and SiO2. The investigation of changes in the quality of ceramic moulds (including the recycled ceramic material) includes the chemical composition of the ceramics as recovered ceramic material, changes in the particle size of the layered covering material, the gas permeability during the pouring of liquid metal, and the creation of the porosity are presented. Than the thermophysical parameters and dimensional accuracy of the casting manufactured in the new ceramic layered shell moulds were analysed. Additionally the global cost savings and improved ecological conditions in the foundry and its surroundings was estimated.

Przejdź do artykułu

Autorzy i Afiliacje

A. Soroczyński
R. Haratym
R. Biernacki

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji