Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19' martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
Download PDF Download RIS Download Bibtex

Abstract

Lead Zirconium Titanate (PZT) is a potential piezoelectric material for sensor and transducer applications due to its outstanding piezoelectric coupling near the morphotropic phase boundary (MPB). This is because PZT can switch between tetragonal and rhombohedral phases. PZT is still considered to be one of the piezoelectric materials that has received the greatest amount of attention from researchers and is used the most frequently. Modification with Lithium will improve the piezoelectric properties. In this study, the structural properties and morphological studies of Lead zirconium titanate and Lead zirconium titanate with Lithium modification have been evaluated. Various Scherrer’s models and other models, such as the Williamson-Hall model and Size-strain plots model, were used to display the observed fluctuations in crystallite size. Morphological analysis was used to determine the particle size. Graphs showing the distribution of particle sizes were drawn.
Go to article

Authors and Affiliations

A. Navakoti
1
D.S. Chakram
1
M. Dasari
1

  1. Gitam (Deemed To Be University), Department Of Physics, Gss, Visakhapa tnam-45, India
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19’ martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
ORCID: ORCID

This page uses 'cookies'. Learn more