Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The concrete deck at the negative bending moment region of a continuous steel-concrete composite girder bridge is the weakest part of the structure. Introducing ultra-high performance concrete (UHPC) to the hogging region may overcome the shortage and break through the bottleneck. This paper explores the cracking performance of steel-concrete composite girders with concrete slabs topped by a thin layer of UHPC subjected to a negative bending moment.Areal continuous composite girder bridge is briefly introduced as the engineering background, and the cracking characteristic of the concrete deck over the middle piers of the bridge is numerically modeled. Approaches to strengthen the cracking performance of the concrete deck at the hogging region through topping UHPC overlays are proposed. The effectiveness of the approaches is examined by conducting a series of numerical and experimental tests. Numerical results indicate that the normal concrete (NC) deck near the middle forums of the bridge would crack due to the large tensile stress from negative bending moments. Replacing the top concrete with an identical-thick UHPC overlay can increase the cracking resistance of the deck under the moment. As the thickness of the UHPC overlay increased from 6.0 cm to 12.0 cm, the maximum shear stress at the UHPC overlay-to-NC substrate interface under different load combinations was decreased by 56.3%~65.3%. Experimental results show that the first-cracking load of the composite beam usingan NC-UHPC overlaid slab was 2.1 times that using an NC slab. The application of a UHPC overlaid
deck can significantly improve the crack performance of the steel-concrete composite girder bridge.
Go to article

Authors and Affiliations

Zhiyong Wan
1 2
ORCID: ORCID
Guohe Guo
3
ORCID: ORCID
Zhiguo Wang
3
ORCID: ORCID
Shaohua He
4
ORCID: ORCID
Juliang Tan
2
ORCID: ORCID
Libo Hou
5
ORCID: ORCID

  1. College of Civil Engineering, Hunan University, Changsha 410082, China
  2. Guangdong Communication Planning & Design Institute Co., Ltd., Guangzhou 510507, China
  3. Guangdong Yunmao Expressway Co. Ltd., Guangzhou 525346, China
  4. Guangdong University of Technology, Guangzhou 510006, China
  5. Guangdong Highway Construction Co., LTD, Guangzhou 510623, China
Download PDF Download RIS Download Bibtex

Abstract

Steel-concrete composite beam has been increasingly applied to large span cable-stayed bridges. It takes full advantage of the material properties of steel and concrete. However, the concrete deck bears tension in the negative moment zone, such as zero block, which is disadvantageous to structures. Aiming at this problem, a finite element model of the zero block in the negative moment zone of a semi-floating cable-stayed bridge is built, and the local mechanical performance of the bridge deck under completed status is studied. Based on the analysis results, three improvement measures have been proposed. The improvement effect of each method and composed of three methods has been studied. The numerical results show that the whole zero block zone is in the compressed state under the combined action of the bending moment and axial force of the stay cable. However, the local negative moment effect in the zero block zone is very prominent under the support of the diaphragm plate. Removing parts of the diaphragm plate at the bearing position can significantly improve local mechanical behavior in the concrete deck, which transfers the local support to the adjacent two diaphragm plates. The composed improvement effect is prominent when the three measures are adopted simultaneously.
Go to article

Authors and Affiliations

Tianyu Qi
1
ORCID: ORCID
Chao Wang
2
ORCID: ORCID
Xiang Pan
3
ORCID: ORCID
Guining Han
3
ORCID: ORCID

  1. Hubei University of Technology, School of Civil Engineering, Architecture and Environment,Wuhan.Hubei, China
  2. Hubei University of Technology, School of Civil Engineering, Architecture and Environment, KeyLaboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education,Wuhan. Hubei, China
  3. Hubei University of Technology, School of Civil Engineering, Architecture and Environment,Wuhan. Hubei, China

This page uses 'cookies'. Learn more