Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 99
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

he paper contains results of a in situ research main task of which was to detect objects buried, partially or completely, in the sea bottom. Object detecting technologies employing acoustic wave sources based on nonlinear interaction of elastic waves require application of parametric sound sources. Detection of objects buried in the sea bottom with the use of classic hydroacoustic devices such as the sidescan sonar or multibeam echosounder proves ineffective. Wave frequencies used in such devices are generally larger than tens of kHz. This results in the fact that almost the whole acoustic energy is reflected from the bottom. On the other hand, parametric echosounders radiate waves with low frequency and narrow beam patterns which ensure high spatial resolution and allows to penetrate the sea bottom to depths of the order of tens of meters. This allows to detect objects that can be interesting, among other things, from archaeological or military point of view.
Go to article

Authors and Affiliations

Eugeniusz Kozaczka
Grażyna Grelowska
Sławomir Kozaczka
Wojciech Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The understanding the influence of biological processes on the characteristics of the signals backscattered by the sea floor is crucial in the development of the hydroacoustical benthic habitat classification techniques. The impact of the microphytobenthos photosynthesis on the acoustical backscattering properties of the Atlantic sandy sediments was previously demonstrated by Holliday et al. (2004) and Wildman and Huettel (2012). To account for the sensitivity of the hydroacoustical classification techniques to the backscattering properties of local marine sediments, it is important to understand the microphytobenthos photosynthesis impact for the Baltic Sea where the techniques are being actively developed now. This is the main motivation of the paper. In the paper the influence of the microphytobenthos photosynthesis on the characteristics of the echo signals reflected by sandy sediments in the typical Baltic temperature and the salinity conditions is discussed. The interdisciplinary multiday laboratory experiment was conducted to study the impact of benthic microalgal photosynthesis on the characteristics of the echo signal reflected by sandy sediments. Hydroacoustical data were collected under controlled constant light, temperature and salinity conditions. The oxygen content at different levels of the water column was simultaneously monitored.
Go to article

Authors and Affiliations

Natalia Górska
Ewa Kowalska-Duda
Jacek Marszal
Jan Schmidt
Zygmunt Klusek
Download PDF Download RIS Download Bibtex

Abstract

Four halacarid species: Agaue agauoides, Agaue parva, Bradyagaue drygalskii, and Halacarus minor have been extracted from bottom samples taken in Admiralty Bay, King George Island, South Shetland Islands, another four, Colobocerasides auster, Halacarus arnaudi, Lohmannella fukushimai, and L. gaussi, from Kapp Norvegia, Atka and Halley Bay, Weddell Sea. Most of these species are widespread around Antarctica and adjacent islands. Diagnostic characters are outlined. An annotated list presents 66 halacarid species reported from south of the Antarctic Polar Front. © 2016 Polish Academy of Sciences 2016.
Go to article

Authors and Affiliations

Ilse Bartsch
Download PDF Download RIS Download Bibtex

Abstract

Zoidbergus , a new genus of Apseudidae, is described for deep−water Tanaidacea classified previously in the genus Apseudes : A. abyssalis , A. lagenirostris , A. paragracilis , A. tenuimanus , A. tenuis and A. vicinus . The new genus differs from Apseudes s. str. by having acute eyelobes without visual elements, elongated second article of mandibular palp, and carpus of pereopods 2–3 longer than or as long as propodus. Zoidbergus gen. n. can also be distinguished from Apseudes s. str. by the lack of large bases of pereopods 5–6 covered by numerous plumose setae as well as the lack of dense plumose setation on lateral margins of pereonites and pleonites. By general body habitus and structure of pereopods Zoidbergus gen. n. resembles the apseudid genus Leviapseudes , although the genera can be distinguished by the presence of leaf−shaped seta and elongated pereonites 3–6 in Leviapseudes . Based on specimens collected during the IceAGE1 Cruise in September 2011, Zoidbergus tenuis is redescribed and morphology of an undescribed species Zoidbergus sp. A is provided. Supplementary description for Zoidbergus vicinus is given based on type material from Statens Naturhistoriske Museum, University of Copenhagen. Additionally comments on the other deep water Apseudes species: A. siegi and A. vitjazi , are given.
Go to article

Authors and Affiliations

Piotr Jóźwiak
Download PDF Download RIS Download Bibtex

Abstract

The climatic change on King George Island (KGI) in the South Shetland Islands, Antarctica, in the years of 1948–2011 are presented. In the reference period, a statistically significant increase in the air temperature (0.19 ° C/10 years, 1.2 ° C in the analysed period) occurred along with a decrease in atmospheric pressure (−0.36 hPa/10 years, 2.3 hPa). In winter time, the warming up is more than twice as large as in summer. This leads to decrease in the amplitude of the annual cycle of air temperature. On KGI, there is also a warming trend of daily maximum and daily minimum air temperature. The evidently faster increase in daily minimum results in a decrease of the diurnal temperature range. The largest changes of air pressure took place in the summertime (−0.58 hPa/10 years) and winter (−0.34 hPa/10 years). The Semiannual Oscillation pattern of air pressure was disturbed. Climate changes on KGI are correlated with changing surface temperatures of the ocean and the concentration of sea ice. The precipitation on KGI is characterised by substantial variability year to year. In the analysed period, no statistically significant trend in atmospheric precipitation can be observed. The climate change on KGI results in substantial and rapid changes in the environment, which poses a great threat to the local ecosystem.
Go to article

Authors and Affiliations

Marek Kejna
Andrzej Araźny
Ireneusz Sobota
Download PDF Download RIS Download Bibtex

Abstract

Metals are useful raw materials used in various industries. But one of the side-effects of their production is pollution of the marine environment.
Go to article

Authors and Affiliations

Jacek Bełdowski
1
Magdalena Bełdowska
2

  1. PAS Institute of Oceanology in Sopot
  2. Faculty of Oceanography and Geography,University of Gdańsk
Download PDF Download RIS Download Bibtex

Abstract

A significant part of hard coal production (15–19% in the years 2010–2017, i.e. 1.0–1.3 billion

tons per year) is traded on the international market. The majority of coal trade takes place by sea,

accounting for 91–94% of the total coal trade. The article discusses the share of coal in international

seaborne trade and the largest coal ports. Coal is one the five major bulk commodities (in addition

to iron ore, grain, bauxite, alumina, and phosphate rock). In the years 2010–2016, the share of coal

in international seaborne trade and major bulk commodities was 36–41% and 11–12%, respectively.

Based on the analysis of coal throughput in different ports worldwide, the ports with the

largest throughput include the ports of Qinhuangdao (China), Newcastle (Australia), and Richards

Bay (South Africa). For 2013–2017, their throughput amounted to a total of 411–476 million tons

of coal. The largest coal exporting countries were: Australia, Indonesia, Russia, Colombia, South

Africa, and the US (a total of 85% share in global coal exports), while the largest importers are

Asian countries: China, India, Japan, South Korea and Taiwan (a 64% share in global imports). In

Europe, Germany is the largest importer of coal (54 million tons imported in 2016). The article also

discusses the freight costs and the bulk carrier fleet. Taking the price of coal at the recipient’s (i.e.

at the importer’s port) into account, the share of freight costs in the CIF price of steam coal (the

price of a good delivered at the frontier of the importing country) was at the level of 10–14%. In

the years 2010–2016, the share of bulk carriers in the world fleet was in the range of 11–15%. In

terms of tonnage, bulk carriers accounted for 31–35% of the total tonnage of all types of ships in

the world. The share of new (1–4 years) bulk carriers in the total number of ships on a global scale

in the years 2010–2016 was 29–46%.

Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
Zbigniew Grudziński
Download PDF Download RIS Download Bibtex

Abstract

The properties of the nonlinear phenomenon in water, including sea water, have been well known for many decades. The feature of the non homogeneous distribution of the speed of sound along the depth of the sea is very interesting from the physical and technical point of view. It is important especially in the observation of underwater area by means of acoustical method (Grelowska et al., 2013; 2014). The observation of the underwater space has been carried out for more than hundred years. In the second half of the twentieth century we observed very intense trend of development of the measuring methods of underwater sound speed. It was done mainly in the linear sound propagation aspect. At the end of 20th century nonlinear devices were invented. Thus, from this point of view, knowledge on the nonlinear properties of the sea water is the matter of interest. The phenomenon of nonlinear distortion of elastic waves, and the same the efficiency of nonlinear transfer of energy from the primary wave to the higher harmonic components depend on properties of the medium, especially on the material constant known as the nonlinearity parameter B/A. The Baltic Sea is a specific reservoir with untypically low salinity and low depth (Grelowska, 2000). In the paper results of investigation of nonlinear properties of the South and the Central Baltic by means of thermodynamic method are presented.
Go to article

Authors and Affiliations

Grażyna Grelowska
Eugeniusz Kozaczka
Download PDF Download RIS Download Bibtex

Abstract

A total of 142 cods: 60 from the South−East Ground of Bear Island and 82 from the Pomeranian Bay (Baltic Sea) were examined for their ecto− and endoparasites. Twenty different parasite species, comprising one Myxosporea, three Cestoda, four Digenea, seven Nematoda, three Acanthocephala and two Crustacea were found. The parasite component communities comprised 1446 individuals (17 species, six higher taxa) from the Bear Island and 6588 individuals (nine species, three higher taxa) from Pomeranian Bay. The observed parasite host specificity was low, and the intensity in a single fish ranged from one to 279 specimens. The eudominant parasite species were Echinorhynchus gadi , Hemiurus levinseni and Contracaecum osculatum . The dominant parasite communities from the Bear Is − land were nematodes, but acanthocephalans dominated in cod from the Baltic Sea. It appears that one group of parasites, better adapted for the specific conditions of the macrohabitat, has replaced another. The most prevalent parasites were E. gadi , Anisakis simplex , C. osculatum and Hysterothylacium aduncum , and the mean values of crowding were the highest for E. gadi and Pomphorhynchus laevis . The nematode Camallanus lacustris was noted in this host species for the first time. Only six species of parasites were common to cod from both fishing grounds
Go to article

Authors and Affiliations

Ewa Sobecka
Ewa Łuczak
Beata Więcaszek
Artur Antoszek
Download PDF Download RIS Download Bibtex

Abstract

The transport pipeline of lifting the underwater minerals to the surface of the water onto the ship during the movement of the vessel takes in the water a curved deformed shape. Analysis of the state of stability of the pipeline showed that if the flow velocity of fluid in the pipeline exceeds a certain critical value Vkr, then its small random deviations from the equilibrium position may develop into deviations of large amplitude. The cause of instability is the presence of the centrifugal force of the moving fluid mass, which occurs in places of curvature of the axis of the pipeline and seeks to increase this curvature when the ends of the pipeline are fixed. When the critical flow velocity is reached, the internal force factors become unable to compensate for the action of centrifugal force, as a result of that a loss of stability occurs. Equations describing this dynamic state of the pipeline are presented in the article.
Go to article

Bibliography

[1] Benjamin T .B. Dynamic of a system of articulated pipes conveying fluid. I Theory. Proc. Royal Soc. 261, 457-486 (1961), II Experiment, 487-99.
[2] Chung J .S., Bao-Rang Cheng, Huttelmaier H .P. Three-Dimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part II. Excitation at Pipe Top and External Torsion, International Journal of Offshore and Polar Engineering 4, 4, December 1994 (ISSN 1053-5381).
[3] Goman O.G., Kirichenko E.A., Vishnyak E.A. Calculation of hydrodynamic loads on the elements of submersible structures of deep-water slurry pipelines. System Technologies: A collection of scientific papers – Dnipropetrovsk: RVKIA Ukraine 8, 17-23 (1999) [in Russian].
[4] Gregory R .W., Paidoussis M .P. Unstable oscillation of turbular cantilevers, conveying fluid. I Theory. Proc. of the Royal Soc., London, Ser. A, 293, 528-542 (1966).
[5] Handelman H.M. Quart. Appl. Math. 13, 326-334 (1955).
[6] Kirichenko E.A. Possible cases of simplification of the system of equations of oscillations of deep-water slurry pipelines in a flat formulation. Mining, electromechanics and automatics: A collection of scientific papers – Dnipropetrovsk: RVKNGA of Ukraine 4, 137-142 (1999) [in Russian].
[7] Long R.H. Jr. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. J. App. Mech. 22, 1, 65-68 (1955).
[8] Niordson F .I.N. Vibrations of cylindrical tube containing flowing fluid. Trans. of the Royal Inst. of Tech., Stockholm, Sweden, 1953, No.73. 392
[9] Szelangiewicz T., Żelazny K., Buczkowski R., Computer simulations of deformations and tensions in the pipelines of hydraulic lifting systems, Scientific Journals of the Maritime University of Szczecin – Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124), 37-44 (2017). DOI : https://doi.org/10.17402/243
[10] Yao Nijun, Cao Bin, Xia Jianxin, Pressure loss of flexible hose in deep-sea mining system. 18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, Czech Republic. ISBN 978-83-7717-269-8.
[11] Yu Hong-yun, Liu Shao-jun, Dynamics of vertical pipe in deep-ocean mining system, J. Cent. South Univ. Technol. (2007) 04-0552-05. DOI : https://doi.org/10.1007/s11771-007-0106-0
Go to article

Authors and Affiliations

Jerzy Sobota
1
ORCID: ORCID
Xia Jianxin
2
ORCID: ORCID
Evgeniy Kirichenko
3
ORCID: ORCID

  1. Wrocław University of E nvironmental and Life Sciences, Poland
  2. Minzu University of China, Beijing, China
  3. Mining University, Dnipropetrovsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Altogether 105 algal taxa were identified including 101 diatom species. Chaetoceros criophilus was dominant in the western part of the study area influenced by waters from the Bellingshausen Sea. Corethron criophilum was abundant in the Weddcll Sea water mass found to the east of 53.5°W meridian. Nitzschia cylindrus common in the ice-melt samples was dominant in only two net phytoplankton collections obtained at the ice-edge zone. Additional samples from Admiralty Bay, at King George Island revealed the dominance of Chaetoceros socialis and the presence of many tychoplankton species. Very few diatom cells were found in the open waters of the Bransfield Strait which combined with the presence of krill, suggested intensive grazing by herbivores. The unstable waters of the Weddell-Scotia Confluence area contained little phytoplankton except for a station dominated by Phaeocystis pouchetii. Greater cell densities were related to warm, lower salinity Weddell Sea water of summer modification found in the surface layer east from 49°W.

Go to article

Authors and Affiliations

Ryszard Ligowski
Elżbieta Kopczyńska
Download PDF Download RIS Download Bibtex

Abstract

How does inflowing river water affect the quality of water in the Baltic Sea? Why are the chemicals used in agriculture so dangerous for seas, and what future lies in store for the Baltic?

Go to article

Authors and Affiliations

Jan Marcin Węsławski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The Author tries to “think out of the box”, presenting “Sponsalia ex hoc mundo” (“Hand fastening out of this world”). The title reflects the view that the outer space sciences and the sea sciences are analytically separable, but practically interlinked. It might be observed in the context of space technology and satellite technics, a new system of management and government, as well as a new system of law and policy. Nowadays, the outer space infrastructure (the use of artificial Earth satellites for Direct Television Broadcasting, communications, remote sensing, navigation, military missiles) affects infrastructure of our Planet, including maritime infrastructure. There is, therefore, the need for a new face of integrated system of science and practice.

Go to article

Authors and Affiliations

Zdzisław Brodecki
Download PDF Download RIS Download Bibtex

Abstract

The article presents a review of the researches on sea and atmospheric physics conducted by the Polish expeditions in Antarctica from 1977 to 1990.

Go to article

Authors and Affiliations

Henryk Gurgul
Download PDF Download RIS Download Bibtex

Abstract

The highest concentrations of algal cells (1.1 x l0 6 litre- 1 ) and of algal carbon (20 μg litre -1 ) were associated with a lens of ice melt water in the northeast of the study area. Phytoflagellates were dominant at all stations with greater numbers always in the 0 - 20 m surface layer and with the peaks of Cryptophyceae in the open waters and also near the ice edge east of 50° W. Picoplankton flagellates and monads (1.5-5.0 μ) were generally next in abundance and most important numerically in the near ice stations in the western part of the study area. Parasinophyceae were usually more abundant than Nitzschia cylindrus (Grunow) Hasle, the only common diatom species found mainly in the western near ice edge stations. The presence olN.cylindrus, dominant in the pack ice and in phytoplankton near the ice edge, shows that algae released from ice may act as an inoculum for the phytoplankton.

Go to article

Authors and Affiliations

Elżbieta Kopczyńska
Download PDF Download RIS Download Bibtex

Abstract

Results of an oceanographic survey along the edge of drifting pack ice in the area between Elephant Island and the South Orkney Islands are reported. The influence of sea ice on hydrological factors was very weak. It was not possible to develop oceanographic features characteristic for marginal sea-ice zones in the areas with well marked surface currents and dynamic hydrological conditions. The spatial distribution of chlorophyll was governed by water stability, although during our survey, areas with enhanced vertical stability could not be described in terms of a sea-ice edge influence.

Go to article

Authors and Affiliations

Maciej Lipski
Download PDF Download RIS Download Bibtex

Abstract

Joint action by the countries surrounding the Baltic is crucial for the conservation of the sea’s unique ecosystem.
Go to article

Authors and Affiliations

Blanka Pajda
1
Agata Zaborska
1

  1. PAS Institute of Oceanology in Sopot
Download PDF Download RIS Download Bibtex

Abstract

Bills of Lading are transferable documents of title and the transfer of document results in the transfer of the rights incorporated in it. Some of B/L are additionally negotiable. However the legal meaning of these two terms isn’t the same what is not respected in practice. Historically there is also a difference in legal grounds and scope of rights represented and transferred by negotiable bills of lading according to British, American and continental law. An important role in this differentiation was played by the doctrine of privity of contract. This ultimately affects the legal position and scope of the acquired rights of legitimate holders of bills of lading, which are considered to be “negotiable”, including the right to obtain claims from the carrier for cargo damage.

Go to article

Authors and Affiliations

Maria Dragun-Gertner
Download PDF Download RIS Download Bibtex

Abstract

The article provides a detailed characteristics of the concept of marine scientific research on the grounds of the existing norms of the international law of the sea, normative acts of the Republic of Poland and in terms based on the most recent and significant scientific publications constituting the literature on the subject. One of the core studies being conducted by the Committee on the International Legal Status of Submarine Cables and Pipelines established in 2018 under the International Law Association is the field of application of UNCLOS standards to hydrographic surveys carried out as part of the process preceding the laying of submarine cables and pipelines. This paper presents a hypothesis on the separate treatment of the concept of marine scientific research and hydrographic surveys, and presents the legal impediments that the State or the laying company may face.
Go to article

Authors and Affiliations

Tomasz Kamiński
1 2
ORCID: ORCID
Rafał Szewczyk
3
ORCID: ORCID

  1. Zakład Międzynarodowego Prawa Publicznego, Wydział Prawa i Administracji Uniwersytetu Warszawskiego
  2. Zakład Prawa i Ekonomii, Wydział Bezpieczeństwa, Logistyki i Zarządzania Wojskowej Akademii Technicznej
  3. Wydział Prawa i Administracji Uniwersytetu Warszawskiego
Download PDF Download RIS Download Bibtex

Abstract

This article presents the information concerning aspects of the autonomous underwater vehicle (AUV) mission planning process, emphasizing maritime security monitoring and surveillance, and using side-looking sonars as a primary data source. The paper describes characteristic mission plan phases and gives suggestions for the operators, mainly concerning the safety and effectiveness of the AUV mission. The article describes the coverage path planning algorithm, which could be used to create an effective AUV mission plan, considering AUV manoeuvrability, sonar characteristics, and environmental factors. The results of the algorithms have been verified during the real mission of the AUV vehicle.
Go to article

Authors and Affiliations

Wojciech Wawrzyński
1
Mariusz Zieja
2
Mariusz Żokowski
3
Norbert Sigiel
4

  1. Warsaw University of Technology, ul. Plac Politechniki 1, 00-661 Warszawa, Poland
  2. Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
  3. Armament Agency, ul. Królewska 1/7, 00-909 Warszawa, Poland
  4. 13.MCM Squadron, ul. Smidowicza 48, 81-106 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns GMT application for studies of the geophysical and geomorphological settings of the Weddell Sea. Its western part is occupied by the back-arc basin developed during geologic evolution of the Antarctic. The mapping presents geophysical settings reflecting tectonic formation of the region, glaciomarine sediment distribution and the bathymetry. The GlobSed grid highlighted the abnormally large thickness of sedimentary strata resulted from the long lasting sedimentation and great subsidence ratio. The sediment thickness indicated significant influx (>13,000m) in the southern segment. Values of 6,000–7,000 m along the peninsula indicate stability of the sediments influx. The northern end of the Filchner Trough shows increased sediment supply. The topography shows variability -7,160–4,763 m. The ridges in the northern segment and gravity anomalies (>75 mGal) show parallel lines stretching NW-SE (10°–45°W, 60°–67°S) which points at the effects of regional topography. The basin is dominated by the slightly negative gravity >-30 mGal. The geoid model shows a SW-NE trend with the lowest values <18 m in the south, the highest values >20m in the NE and along the Coats Land. The ripples in the north follow the geometry of the submarine ridges and channels proving correlation with topography and gravitational equipotential surface.
Go to article

Bibliography

1. Aleshkova, N. D., Golynsky, A. V, Kurinin, R.G., Mandrikov, V.S., 1997. Gravity Mapping in the Southern Weddell Sea Region. (Explanatory note for free-air and Bouguer anomalies maps). Polarforschung, 67 (3), 163–177.
2. Anderson, J.B., 1972a. The Marine Geology of the Weddell Sea. Florida State University Sedimentological Research Laboratory, Publication Number 35, Florida State University, Tallahassee, p. 222.
3. Anderson, J.B., 1972b. Nearshore glacial-marine deposition from modern sediments of the Weddell Sea. Nature 240, 189–192.
4. Anderson, J.B., Andrews, B.A., Bartek, L.R., Truswell, E.M., 1991. Petrology and palynology of glacial sediments: implications for subglacial geology of the eastern Weddell Sea, Antarctica. In: Thomson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Cambridge University Press, Cambridge (UK), 231–235.
5. Barker, P.F., Dalziel, I.W.D., Storey, B.C., 1991. Tectonic evolution of the Scotia Arc region. In: Tingey, R.J. (Ed.), Antarctic Geology. Oxford University Press, 215–248.
6. Bart, P.J., DeBatist, M., Jokat, W., 1999. Interglacial collapse off Crary Trough Mouth Fan, Weddell Sea, Antarctica: implications for Antarctic glacial history. Journal of Sedimentary Research 69, 1276–1289.
7. Bell, R.E., Brozena, J.M., Haxby, W.F., Labrecque, J.L., 1990. Continental Margins of the Western Weddell Sea: Insights from Airborne Gravity and Geosat‐Derived Gravity. Contributions to Antarctic Research I, 50, doi: 10.1029/AR050p0091.
8. Bentley, M.J., Anderson, J.B., 1998. Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science 10, 309–325.
9. Bentley, M., Fogwill, C., Le Brocq, A., Hubbard, A., Sugden, D., Dunai, T., Freeman, S., 2010. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change. Geology 38, 411–414.
10. Bentley, M.J., Hein, A., Sugden, D.E., Whitehouse, P., Vieli, A., Hindmarsh, R.C.A., 2012. Post-glacial thinning history of the Foundation Ice Stream, Weddell Sea embayment, Antarctica. In: Abstract C51C-0787 Presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 December 2012.
11. Bentley, M.J., Hein, A.S., Sugden, D.E., Whitehouse, P.L., Shanks, R., Xu, S., Freeman, S.P.H.T., 2017. Deglacial history of the Pensacola mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quaternary Science Reviews 158, 58–76.
12. Bradley, S.L., Hindmarsh, R.C.A., Whitehouse, P.L., Bentley, M.J., King, M.A., 2015. Low post-glacial rebound rates in the Weddell Sea due to late Holocene ice-sheet readvance. Earth and Planetary Science Letters 413, 79–89.
13. Carsey, F.D., 1980. Microwave observation of the Weddell Polynya. Monthly Weather Review 108, 2032–2044.
14. Clark, P.U., 2011. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change: comment. Geology 39, 239, doi: 10.1130/G31533C.1.
15. Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J., Barbat, M.M., 2018. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography 149, 10–24.
16. Crawford, K., Kuhn, G., Hambrey, M.J., 1996. Changes in the character of glaciomarine sedimentation in the southwestern Weddell Sea, Antarctica: evidence from the core PS1423-2. Annals of Glaciology 22, 200–204.
17. Cunningham, W.D., Dalziel, I.W.D., Lee, T.-Y., Lawver, L.A., 1995. Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research 100, 8257–8266.
18. Curtis, M.L., Storey, B.C. 1996. A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution. Geological Society, London, Special Publications 108, 11–30, doi: 10.1144/ GSL.SP.1996.108.01.02.
19. DeConto, R., Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597.
20. Eagles, G., Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 28–50.
21. Elverhøi, A., 1981. Evidence for a late Wisconsin glaciation of the Weddell Sea. Nature 293, 641–642.
22. Elverhøi, A., Roaldset, E., 1983. Glaciomarine sediments and suspended particulate matter, Weddell Sea shelf, Antarctica. Polar Research 1, 1–21.
23. Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., Wisotzki, A., 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research 53, 515–538.
24. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393.
25. Gales, J., Leat, P., Larter, R., Kuhn, G., Hillenbrand, C.D., Graham, A., Mitchell, N., Tate, A., Buys, G., Jokat, W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology 348, 73–87.
26. Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
27. GEBCO Compilation Group, 2020. GEBCO 2020 Grid, doi: 10.5285/ a29c5465-b138-234d-e053-6c86abc040b9.
28. GDAL/OGR contributors, 2020. GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.
29. Grobe, H., Huybrechts, P., Fütterer, D.K., 1993. Late Quaternary record of sea-level changes in the Antarctic. Geologische Rundschau 82, 263–275, doi: 10.1007/BF00191832.
30. Grikurov, G.E., Ivanov, V.L., Traube, V.V., Leitchenkov G.L., Aleshkova, N.D., Golynsky, A.V., Kurinin, R.G., 1991. Structure and evolution of sedimentary basins in the Weddell province. Abstract 6th International Symposium Antarctic Earth Sciences, Tokyo, 185–190.
31. Haase, G.M., 1986. Glaciomarine sediments along the Filchner/Ronne Ice Shelf. southern Weddell Sea e first results of the 1983/84 ANTARKTIS- II/4 expedition. Marine Geology 72, 241–258.
32. Haid, V., Timmermann, R., 2013. Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research 118, 2640–2652.
33. Haugland, K., Kristoffersen, Y., Velde, A., 1985. Seismic investigations in the Weddell Sea embayment. Tectonophysics 114 (1–4), 1–21.
34. Haugland, K., 1982. Seismic reconnaissance survey in the Weddell Sea. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison (U.S.A.), 405–413.
35. Hegland, M., Vermeulen, M., Todd, C., Balco, G., Huybers, K., Campbell, S., Conway, H., Simmons, C., 2012. Glacial geomorphology of the Pensacola mountains, Weddell Sea sector, Antarctica. In: Abstracts of the WAIS Workshop 2012, 21.
36. Hein, A.S., Marrero, S.M., Woodward, J., Dunning, S.A., Winter, K., Westoby, M.J., Freeman, S.P.H.T., Shanks, R.P., Sugden, D.E., 2016. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nature Communications 7, 12511, doi: 10.1038/ncomms12511.
37. Hein, A.S., Fogwill, C.J., Sugden, D.E., Xu, S., 2011. Glacial/Interglacial ice-stream stability in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 307, 211–221.
38. Hillenbrand, C.-D., Melles, M., Kuhn, G., Larter, R.D., 2012. Marine geological constraints for the grounding-line position of the Antarctic Ice Sheet on the southern Weddell Sea shelf at the Last Glacial Maximum. Quaternary Science Reviews 32, 25–47.
39. Hillenbrand, C.-D., Bentley, M.J., Stolldorf, T.D., Hein, A.S., Kuhn, G., Graham, A.G.C., Fogwill, C.J., Kristoffersen, Y., Smith, J.A., Anderson, J.B., Larter, R.D., Melles, M., Hodgson, D.A., Mulvaney, R., Sugden D.E., 2014. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews 100, 111–136.
40. Huang, X., Gohl, K. Jokat, W., 2014. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change 118, 25–41.
41. Huang, X., Jokat, W., 2016. Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change 139, 211–225.
42. Johnson, J.S., Nichols, K.A., Goehring, B.M., Balco, G., Schaefer, J.M., 2019. Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth and Planetary Science Letters 518, 127–135.
43. Jokat, W., Fechner, N., Studinger, M., 1997. Geodynamic models of the Weddell Sea embayment in view of new geophysical data. In: Ricchi, C.A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antarctica Publication, Siena (Italy), 453– 459.
44. Kerr, R., Dotto, T.S., Mata, M.M., Hellmer, H.H., 2018. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes. Deep Sea Research Part II: Topical Studies in Oceanography 149, 70–83.
45. King, E.C., Bell, A.C., 1996. New seismic data from the Ronne Ice Shelf, Antarctica. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea tectonics and Gondwana break-up. London, Geological Society of London, 213–226. (Geological Society special publication, 108), doi: 10.1144/GSL.SP.1996.108.01.16.
46. Kjellsson, J., Holland, P.R., Marshall, G.J., Mathiot, P., Aksenov, Y., Coward, A.C., Bacon, S., Megann, A.P., Ridley, J., 2015. Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modelling 94, 141–152.
47. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences 5 (1), 28–42.
48. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90.
49. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
50. König, M., Jokat, W., 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research Solid Earth (1978–2012), 111 (B12).
51. Kristoffersen, Y., Hinz, K., 1991. Evolution of the Gondwana plate boundary in the Weddell Sea area. In: Thomson, M.R. A., Crame, J.A., Thomson, J.W. (Eds), Geological evolution of Antarctica. Cambridge University Press, Cambridge, 225–223.
52. Kuhn, G., Weber, M., 1993. Acoustical characterization of sediments by Parasound and 3.5 kHz systems: related sedimentary processes on the southeastern Weddell Sea continental slope, Antarctica. Marine Geology 113, 201–217.
53. Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (Ed.), Expeditions programm Nr. 75 ANT XXIII/4, AWI, doi: 10.13140/RG.2.2.11468.87687.
54. Larter, R.D., Graham, A.G.C., Hillenbrand, C.-D., Smith, J.A., Gales, J.A., 2012. Late Quaternary grounded ice extent in the Filchner Trough, Weddell Sea, Antarctica: new marine geophysical evidence. Quaternary Science Reviews 53, 111–122.
55. Lemenkova, P., 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 158 pp., doi: 10.13140/RG.2.2.16945.22881.
56. Lemenkova, P., 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
57. Lemenkova, P., 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45 (2), 57–84.
58. Lemenkova, P., 2019b. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
59. Lemenkova, P., 2019c. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
60. Lemenkova, P., 2019d. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
61. Lemenkova, P., 2019e. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14 (2), 39–48.
62. Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
63. Lemenkova, P., 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60.
64. Lemenkova, P., 2020b. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74 (1), 19–39.
65. Lemenkova, P., 2020c. Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute 25, 129–138.
66. Lemenkova, P., 2020d. R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering 13 (1), 5–12.
67. Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (Eds), Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285, doi: 10.6084/m9.figshare.7434230.
68. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp R.H., Olson, T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861.
69. Lindeque, A., Martin, Y., Gohl, K., Maldonado, A., 2013. Deep sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Marine Geology 336, 61–83.
70. Livermore, R.A., Woollett, R.W., 1993. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth and Planetary Science Letters 117, (3–4), 475–495.
71. Livermore, R.A., Hunter, R., 1996. Mesozoic seafloor spreading in the southern Weddell Sea. In: Storey, B., King, E., Livermore, R. (Eds.), Weddell Sea Tectonics and Gondwana Breakup. Geological Society, London, Special Publications 108, 227–241.
72. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-Zaldívar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., Rodríguez- Fernández, J., Somoza, L., Vázquez, J.T., 2005. Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Global and Planetary Change 45 (1), 99–129.
73. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-ZaldÍvar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., RodrÍguez-Fernández, J., Somoza, L., Suriñach, E., Vázquez, J.T., 2006. Seismic Stratigraphy of Miocene to Recent Sedimentary Deposits in the Central Scotia Sea and Northern Weddell Sea: Influence of Bottom Flows (Antarctica). In: Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds), Antarctica. Springer, Berlin, Heidelberg, 441–446, doi: 10.1007/3-540-32934- X_56.
74. Michels, K.H., Rogenhagen, J., Kuhn, G., 2001. Recognition of contour- current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Marine Geophysical Research 22, 465–485.
75. Mueller, R.D., Timmermann, R., 2017. Weddell Sea Circulation. Journal of Atmospheric and Solar-Terrestrial Physics 161, 105–117.
76. Nankivell, A.P., 1997. Tectonic Evolution of the Southern Ocean Between Antarctica, South America and Africa Over the Last 84 Ma. Ph.D. thesis University of Oxford, Oxford, UK.
77. Nicholls, K.W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E., 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Reviews of Geophysics 47, RG3003, doi: 10.1029/2007RG000250.
78. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406, doi: 10.1029/2011JB008916.
79. Paxman, G.J.G., Jamieson, S.S.R., Hochmuth, K., Gohl, K., Bentleya, M.J., Leitchenkov, G., Ferracciolif, F., 2019. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 535. 109346, doi: 10.1016/j.palaeo.2019.109346.
80. Riley, T.R., Jordan, T.A., Leat, P.T., Curtis, M.L., Millar, I.L., 2020. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research 79, 185–196, doi: 10.1016/j. gr.2019.09.014.
81. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason- 1 reveals buried tectonic structure. Science 346 (6205), 65–67.
82. Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D.D., Damiani, T.M., Young, D., Cochran, J.R., Richter, T.D., 2016. New Antarctic gravity anomaly grid forenhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters 43 (2), doi: 10.1002/2015GL067439.
83. Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
84. Siegert, M., Ross, N., Corr, H., Kingslake, J., Hindmarsh, R., 2013. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quaternary Science Reviews 78, 98–107.
85. Smith, W.H.F., 1993. On the accuracy of digital bathymetric data. Journal of Geophysical Research 98, B6, 9591–9603.
86. Snyder, J.P., 1987. Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395. Washington, DC: U.S. Government Printing Office, 124–137.
87. Snyder, J.P., 1993. Flattening the Earth: Two Thousand Years of Map Projections. ISBN 0-226-76747-7.
88. Storey, B.C., Dalziel, I.W.D., Garrett, S.W., Grunow, A.M., Pankhurst, R.J., Vennum, W.R., 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. In: Scotese, C.R., Sager, W.W. (Eds), 8th Geodynamics Symposium, Mesozoic and Cenozoic Plate Reconstructions. Elsevier, 381–390. (Tectonophysics, 155, 1–4).
89. Storey, B.C., Vaughan, A.P.M., Millar I.L., 1996. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea Tectonics and Gondwana Break-up. Geological Society Special Publication, London, 108, 87–103.
90. Stolldorf, T., Schenke, H.-W., Anderson, J.B., 2012. LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quaternary Science Reviews 48, 20–31.
91. Stow, D.A.V., Faugères, J.C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.C., Viana, A.R. (Eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series. Memoir. Geological Society of London, London, 7–20.
92. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R., 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20 (4), 1756– 1772.
93. Suetova, I.A., Ushakova, L.A., Lemenkova P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
94. Tingey, R.J., 1991. The regional geology of Archean and Proterozoic rocks in Antarctica. In: Tingey, RJ. (Ed.), The Geology of Antarctica, Clarendon Press, Oxford, 1–58.
95. Uenzelmann-Neben, G., 2006. Depositional patterns at Drift 7, Antarctic Peninsula: along-slope versus down-slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology 233, 49–62.
96. Weber, M.E., Bonani, G., Fütterer, K.D., 1994. Sedimentation processes within channel ridge systems, southern Weddell Sea, Antarctica. Palaeoceanography 9, 1027–1048.
97. Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. Eos Transactions of the American Geophysical Union 72 (41), 441.
98. Wessel, P., Smith, W.H.F., 1995. New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union 76 (33), 329.
99. Wessel, P., Smith, W.H.F., 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research 101, 8741-8743.
100. Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F., 2013. Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union 94 (45), 409–410.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Bolshaya Gruzinskaya Str. 10, Bld. 1, Moscow, 123995, Russian Federation;

This page uses 'cookies'. Learn more