Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A set of microphones spatially arranged in space in a specific pattern is called a microphone array. It can be used to extract and enhance the signal of interest from its observation corrupted by other interfering signals, such as noise or to estimate the direction of arrival of a source. In this paper we focus on a problem in which the desired signal (speech signal) is interfered by other signal with fully overlapping bandwidth but with different localization. Our goal is to attenuate the interfering signal. We experimentally study the method in which microphones do not have to be equally spaced and all information regarding signal phase is hidden in a transfer function of the microphone. We focus on determining the microphones positions and FIR filter coefficients so that the actual output the beamformer is as close as possible to the desired one (the level of speech signal remains unchanged, while the interfering signal is attenuated) in the sense of ���� norm. To solve this problem, we use a metaheuristic algorithm. Next, we construct the array and make an experiment in anechoic chamber. The initial results of the experiment show that the proposed method can be applied for array designing.
Go to article

Authors and Affiliations

Agnieszka Wielgus
1
Bogusław Szlachetko
1
Michał Łuczyński
1

  1. Wrocław University of Science and Technology
Download PDF Download RIS Download Bibtex

Abstract

The performance of free-space optical (FSO) communications that using an optical amplifier (OA) in the scheme of an amplify-received (AR)-relaying has a major drawback in the detection of input signal quality under the effects of turbulence. As an OA is based on a fiber-detection (FD) method to receive and delivers a signal at the amplification process stage, there is an opportunity to implement an optical spatial filter (OSF) to improve the quality of an input signal. In this paper, as the continuation of previous work on the direct-detection, the OSF is applied on the AR-relaying. The novelty proposed in this work is the improvement of FD method where the OSF is designed as the integration of cone reflector, pinhole and multi-mode fiber with an OA. The OSF produces an optical signal, the input of the OA, which minimizes the effects of turbulence, background noise and signal fluctuation. Thus, OA in AR-relaying produces signal output with high power and rise up below threshold level. Additionally, an OSF with a lower pinhole diameter produces the best quality of the signal spectral to be delivered into an EDFA. Through this implementation, the performance of optical relaying on FSO can be significantly improved.
Go to article

Authors and Affiliations

Ucuk Darusalam
1 2
Purnomo Sidi Priambodo
3
Fitri Yuli Zulkifli
3
Eko Tjipto Rahardjo
3

  1. Department of Informatics, Faculty of Information and Communications Technology, Universitas Nasional, Jakarta, Indonesia
  2. Universitas Siber Asia, Jakarta, Indonesia
  3. Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia

This page uses 'cookies'. Learn more