Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper includes the behaviour of RC column, using the steel strength data employed by Rafi et al. (2014). Eccentric short columns are studied for this purpose, both tension and compression controlled sections, are analysed considering the current design practice of Pakistan. Three cross sections were analysed using different steel percentages against load-moment interaction and the strength analyses. Concrete strength is also varied in this analysis. The load moment interaction diagrams were observed in major and minor axes and strength analysis is made for compression controlled and tension controlled sections. In this analysis it is observed that a section designed as a tension controlled is giving brittle failure at certain limit which should be avoided. Considering this scenario, several random cross sections are analysed, strength reduction factors for eccentric and pure axial columns are computed. Conclusions are made on behalf of this analysis for different types of column design.

Go to article

Authors and Affiliations

Safdar Abbas Zaidi
Muhammad Arsalan Saeed
Farhan Haider
Download PDF Download RIS Download Bibtex

Abstract

The research focuses on solving the important problem of slope stability in the field of civil engineering. The study adopted an advanced strength double reduction coefficient method for slope stability analysis, which considers the different influence weights of cohesion and internal friction angle, and reduces them with different reduction coefficients to describe the stability of the slope. The simulation experiment results indicate that the attenuation degree of cohesion and internal friction angle affects slope stability. When the reduction coefficient of cohesion increases to 1.737 and the reduction coefficient of internal friction angle increases to 1.201, the slope is prone to instability and failure, and the safety factor of the calculated result is 1.493. Moreover, when the anti-slip pile is set in the middle of the slope (1/2), and the slope is in a critical state, the bending moment and shear force suffered by the anti-slip pile are both maximum, so the reinforcement effect is also the best.
Go to article

Authors and Affiliations

Yucong Gao
1
ORCID: ORCID
Yue Zhao
2
ORCID: ORCID
Tianyuan Xu
3
ORCID: ORCID
Jinlong Xu
4
ORCID: ORCID

  1. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
  2. Xuzhou Power Supply Company, Xuzhou 221000, China
  3. State Grid Henan Electric Power Company, Zhengzhou 450000, China
  4. State Grid Dongying Power Supply Company, Dongying 257100, China

This page uses 'cookies'. Learn more