Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fault diagnosis and condition monitoring of synchronous machines running under load is a key determinant of their lifespan and performance. Faults such as broken rotor bars, bent shafts and bearing issues lead to eccentricity faults. These faults if not monitored may lead to repair, replacement and unforeseen loss of income. Researchers who attempted to investigate this kind of machine stopped at characterizing and deduced ways, types and effects of rotor eccentricity fault on the machine inductances using the winding function method. A modified closed-form analytical model of an eccentric synchronus reluctance motor (SynRM) is developed here taking into cognizance the machine dimensions and winding distribution for the cases of a healthy and unhealthy SynRM. This paper reports the study the SynRM under static rotor eccentricity using the developed analytical model and firming up the model with finite element method (FEM) solutions. These methods are beneficial as they investigated and presented the influence of the degrees of static eccentricity on the machine performance indicators such as speed, torque and the stator
current and assess the extent to which the machine performance will deteriorate when running with and without load. The results show that static eccentricity significantly affects the machine’s performance as the degree of eccentricity increases.
Go to article

Authors and Affiliations

Emmanuel Idoko
1
Gideon David Umoh
2
Pauline Ijeoma Obe
3
Benjamin Okwudili Mama
4
Emeka Simon Obe
5

  1. Department of Electrical and Electronics Engineering, Federal University of Agriculture, 970101 Makurdi, Benue State, Nigeria
  2. Department of Electrical Engineering, Maritime Academy, 523101 Oron, Akwa Ibom State, Nigeria
  3. Department of Industrial Technical Education, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria
  4. Department of Civil Engineering, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria
  5. Department of Electrical, Electronic and Telecommunications Engineering, Botswana International University of Science and Technology, Plot 10071 Boseja, Palapye, Botswana
Download PDF Download RIS Download Bibtex

Abstract

The Synchronous Reluctance Machine (SynRM) is an electrical machine in which the useful electromagnetic torque is produced due to rotor saliency. Its high power- and torque-to-mass ratio and very good efficiency make it a cheap and simple alternative for permanent magnet or induction motors, e.g. in electromobility applications. However, because of magnetic nonlinearities, the rotational speed and torque control of a SynRM is a nontrivial task. In the paper, a control algorithm based on a Hamiltonian mathematical model is presented. The model is formulated using measurement results, obtained by the drive controller. An algorithm is tested in the drive system consisting of a SynRM with the classical rotor and a fast prototyping card. The drive dynamic response in transient states is very good, but the proposed algorithm does not ensure the best efficiency after steady state angular velocity is achieved.

Go to article

Authors and Affiliations

Wojciech Burlikowski
Paweł Kielan
Zygmunt Kowalik
Download PDF Download RIS Download Bibtex

Abstract

This study focuses on the maximum torque current ratio control of synchronous reluctance motors and proposes an optimized control method for the maximum torque current ratio of synchronous reluctance motors based on virtual signal injection. Firstly, the research on the maximum torque current ratio control of synchronous reluctance motors based on the virtual signal injection method is conducted, and the existing virtual unipolar square wave signal injection method is analyzed and studied. Secondly, a non-parametric maximum torque current ratio control strategy based on a synchronous reluctance motor combined with the virtual signal injection method is proposed. This strategy does not involve complex parameter calculations, and the control accuracy is not limited by the accuracy of the parameters in the model. The experimental results showed that under the control of virtual bipolar and unipolar square wave signal injection methods, the load torque was converted from 2 Nm to 6 Nm at t = 2:5 s, and there was a significant change in the current amplitude and waveform of the current vector. Under the control of the bipolar injection method, the current amplitude waveform of the motor was lower than that of the unipolar waveform, and the current was smaller. After the load suddenly changed, it could enter a stable state faster. After the load changed at t = 2:5 s, the phase angle of the current vector was quickly adjusted and stabilized under the control of the bipolar signal. The designed method has a good optimization effect compared to the traditional virtual signal injection method, and can achieve high-performance maximum torque current ratio optimization control on synchronous reluctance motors.
Go to article

Authors and Affiliations

Jinghua Cui
1

  1. The Department of Electrical Engineering, Hebei Chemical and Pharmaceutical CollegeShijiazhuang, 050026, China

This page uses 'cookies'. Learn more