Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Waste plastics make up approximately 20% of the volume of landifill material and almost 10% of the weight. These products contain substantial energy recovery value, and also represent a potentia!iy valuable source of feedstock raw material for additional plastics production. Controlled pyrolysis offers a method of converting raw, mixed waste plastics back into feedstock grade liquids by the application of heat in the absence of oxygen. However, chlorine from the thermal degradation of polyvinyl chloride (PVC) can contaminate the reclamed liquids making them more difficult and expensive for processing, and also produce a corrosive atmosphere which makes processing more expresive. This paper reports on a study of the impact of PVC on the thermal degradation rates other plastics including polypropylene (PP), polystyrene (PS), low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) in a thermogravimetric analyzer (TGA). Commodity plastics were mixed at various ratios with PVC and analyzed by means of their degradation rates to determine the kinetic rate constants which were compared to the rates obtained for the pure plastics. The values of the kinetic parameters for the pure compounds were all very close to, or within the ranges obtained from the literature. The results indicated that the decomposition behavior of the mixtures differed from those of the pure polymers. These deviations were greatest for mixtures of PVC with polyethylene terephthalate where it was determined that the dehydrochlorination step of PVC catalyzes the decomposition of PET. Pyrolysis of mixtures of PVC and polysteryne at temperatures between 200° C and 350° C result in incomplete dehydrochlorination. This results in more chlorinated compounds being released at higher temperatures.
Go to article

Authors and Affiliations

Albrecht Heinzel
Tim C. Keener
Soon-Jai Khang
Download PDF Download RIS Download Bibtex

Abstract

Today, with the high population density of the world, the energy demand is increasing continuously. Global dependency on fossil fuels is very strong and there is a compelling need to reduce our energy consumption in order to offset greenhouse gas emissions. Due to regularly increasing prices of fossil fuels alternative fuels are needed to fulfill the requirements of developing countries like India. Plastics in today's world have become crucial. They are excessively used in industry, as well as in households and other fields due to their lightweight, durability, and design flexibility. Plastic demand is growing day by day, which now poses a huge environmental threat. The current study summarizes the use of WPO (waste plastic oil) in the diesel engine and also concludes the combustion, performance, and emission parameters. After an exhaustive literature search, some interesting results have been found. The study reveals that when using WPO as an alternative source in a diesel engine, the combustion, performance, and emissions are similar to those using conventional diesel fuel. An enhanced BTE (brake thermal efficiency) and reduced emissions of unburned hydrocarbons (UBHC) and carbon monoxide (CO) are reported.
Go to article

Authors and Affiliations

Amardeep
1
Rakesh Kumar
2
Naveen Kumar
3

  1. Indian Institute of Technology (ISM), Dhanbad, 826004, India; G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
  2. G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
  3. Delhi Technological University, Delhi, 110042, India
Download PDF Download RIS Download Bibtex

Abstract

Addressing the burgeoning issue of polymer waste management and disposal, chemical recycling, specifically the production of highquality oil, presents an enticing solution. This research paper delves into the process of plastic waste pyrolysis, focusing on polypropylene, and thoroughly examines the physico-chemical properties of the resulting pyrolytic oil. The oils, obtained from waste plastic pyrolysis (referred to as WPPO), are then blended with kerosene and utilized as fuel for a gas turbine engine. The primary objective of this investigation is to ascertain how the blend composition influences the performance and emission parameters of the micro gas turbine. In our findings, it was observed that all tested waste plastic pyrolysis blends displayed a trend towards escalating regulated emissions such as nitrogen oxides (NOx) with an average increase of 26% for polypropylene pyrolysis oil (PPO). The emission index (EI) for carbon monoxide (CO) was found to be relatively consistent across all fuel blends tested in this study. Interestingly, when considering the thrust specific fuel consumption (TSFC) within the EI calculation, blends of aviation kerosene and plastic oil showed lower values in comparison to the pure Jet A-1 fuel. Furthermore, an augmentation in the proportion of WPPO in the blends consequently led to an elevation in the exhaust gas temperature (an average increase of 8.7% for PPO). Interestingly, the fuel efficiency of the Jet engine, expressed as TSFC, demonstrated a decrease, with an average reduction of 13.8% observed for PPO.
Go to article

Authors and Affiliations

Tomasz Kacper Suchocki
1
Paweł Kazimierski
1
Katarzyna Januszewicz
2
Piotr Lampart
1
Dawid Zaniewski
1
Piotr Klimaszewski
1
Łukasz Witanowski
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  2. Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk,Poland

This page uses 'cookies'. Learn more