Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Light-weight Self-Compacting Concrete (LWSCC) might be the answer to the increasing construction requirements of slenderer and more heavily reinforced structural elements. However there are limited studies to prove its ability in real construction projects. In conjunction with the traditional methods, artificial intelligent based modeling methods have been applied to simulate the non-linear and complex behavior of concrete in the recent years. Twenty one laboratory experimental investigations on the mechanical properties of LWSCC; published in recent 12 years have been analyzed in this study. The collected information is used to investigate the relationship between compressive strength, elasticity modulus and splitting tensile strength in LWSCC. Analytically proposed model in ANFIS is verified by multi factor linear regression analysis. Comparing the estimated results, ANFIS analysis gives more compatible results and is preferred to estimate the properties of LWSCC.

Go to article

Authors and Affiliations

B. Vakhshouri
S. Nejadi
Download PDF Download RIS Download Bibtex

Abstract

The microgrid (MG) technology integrates distributed generations, energy storage elements and loads. In this paper, dynamic performance enhancement of an MG consisting of wind turbine was investigated using permanent magnet synchronous generation (PMSG), photovoltaic (PV), microturbine generation (MTG) systems and flywheel under different circumstances. In order to maximize the output of solar arrays, maximum power point tracking (MPPT) technique was used by an adaptive neuro-fuzzy inference system (ANFIS); also, control of turbine output power in high speed winds was achieved using pitch angle control technic by fuzzy logic. For tracking the maximum point, the proposed ANFIS was trained by the optimum values. The simulation results showed that the ANFIS controller of grid-connected mode could easily meet the load demand with less fluctuation around the maximum power point. Moreover, pitch angle controller, which was based on fuzzy logic with wind speed and active power as the inputs, could have faster responses, thereby leading to flatter power curves, enhancement of the dynamic performance of wind turbine and prevention of both frazzle and mechanical damages to PMSG. The thorough wind power generation system, PV system, MTG, flywheel and power electronic converter interface were proposed by Rusing Mat-lab/Simulink.
Go to article

Authors and Affiliations

Maziar Izadbakhsh
Alireza Rezvani
Majid Gandomkar
Download PDF Download RIS Download Bibtex

Abstract

A study was carried to assess the effect of traffic noise pollution on the work efficiency of shopkeepers in Indian urban areas. For this, an extensive literature survey was done on previous research done on similar topics. It was found that personal characteristics, noise levels in an area, working conditions of shopkeepers, type of task they are performing are the most significant factors to study effects on work efficiency. Noise monitoring, as well as a questionnaire survey, was done in Surat city to collect desired data. A total of 17 parameters were considered for assessing work efficiency under the influence of traffic noise. It is recommended that not more than 6 parameters should be considered for ANFIS modeling hence, before opting for the ANFIS modeling, most affecting parameters to work efficiency under the influence of traffic noise, was chosen by Structural Equation Model (SEM). As a result of the SEM model, two ANFIS prediction models were developed to predict the effect on work efficiency under the influence of traffic noise. R squared for model 1, for training data was 0.829 and for testing data, it was 0.727 and R squared for model 2 for training data was 0.828 and for testing data, it was 0.728. These two models can be used satisfactorily for predicting work efficiency under traffic noise environment for open shutter shopkeepers in tier II Indian cities.
Go to article

Bibliography

1. Aliabadi M., Golmohammadi R., Khotanlou H., Mansoorizadeh M., Salarpour A. (2015), Artificial neural networks and advanced fuzzy techniques for predicting noise level in the industrial embroidery workrooms, Applied Artificial Intelligence, 29(8): 766–785, doi: 10.1080/08839514.2015.1071090.
2. Azadeh A., Saberi M., Rouzbahman M., Valianpour F. (2015), A neuro-fuzzy algorithm for assessment of health, safety, environment and ergonomics in a large petrochemical plant, Journal of Loss Prevention in the Process Industries, 34: 100–114, doi: 10.1016/j.jlp.2015.01.008.
3. Banerjee D. (2012), Research on road traffic noise and human health in India: review of literature from 1991 to current, Noise & Health, 14(58): 113–118, doi: 10.4103/1463-1741.97255.
4. Bell P. (1980), Effects of heat, noise, and provocation on retaliatory evaluative behavior, Journal of Social Psychology, 110(1): 97–100, doi: 10.1080/00224545.1980.9924227.
5. Central Pollution Control Board, New Delhi, India (2002), Ambient Air Quality Standards in Respect of Noise.
6. Eriksson C., Nilsson M.E., Pershagen G. (2013), Environmental noise and health – Current knowledge and research needs, Swedish Environmetal Protection Agency Report 6553, Stockholm.
7. Ghosh S., Biswas S., Sarkar D., Sarkar P.P. (2014), A novel neuro-fuzzy classification technique for data mining, Egyptian Informatics Journal, 15(3): 129–147, doi: 10.1016/j.eij.2014.08.001.
8. Hancock P.A., Vasmatzidis I. (1998), Human occupational and performance limits under stress: The thermal environment as a prototypical example, Ergonomics, 41(8): 1169–1191, doi: 10.1080/001401398186469.
9. Ivoševic J., Bucak T., Andraši P. (2018), Effects of interior aircraft noise on pilot performance, Applied Acoustics, 139: 8–13, doi: 10.1016/j.apacoust.2018.04.006.
10. Khambete A.K., Christian R.A. (2014), Predicting efficiency of treatment plant by multi parameter aggregated index, Journal of Environmental Research and Development, 8(3): 530–539.
11. Liu W., Zhao T., Zhou W., Tang J. (2018), Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM, Safety Science, 105: 98–113, doi: 10.1016/j.ssci.2018.01.009.
12. Mallick Z., Kaleel A.H., Siddiqui A.N. (2009), An expert system for predicting the effects of noise pollution on grass trimming task using fuzzy modeling, International Journal of Applied Environmental Sciences, 4(4): 389–403.
13. Norris M., Lecavalier L. (2010), Evaluating the use of exploratory factor analysis in developmental disability psychological research, Journal of Autism and Developmental Disorders, 40(1): 8–20, doi: 10.1007/ s10803-009-0816-2.
14. Pal D., Bhattacharya D. (2012), Effect of road traffic noise pollution on human work efficiency in government offices, private organizations, and commercial business centres in Agartala City using fuzzy expert system: A case study, Advances in Fuzzy Systems, 2012: Article ID 828593, doi: 10.1155/2012/828593.
15. Quartieri J., Mastorakis N.E., Guarnaccia C., Troisi A., D’Ambrosio S., Iannone G. (2009), Road intersections noise impact on urban environment quality, [in:] Recent Advances in Applied and Theoretical Mechanics. Proceedings of the 5th WSEAS International Conference on Applied and Theoretical Mechanics(MECHANICS’09), Puerto de la Cruz, Tenerife, Spain, pp. 162–171), WSEAS Press.
16. Rashid T. (2012), Fuzzy logic and neuro fuzzy models for direct current motors, International Journal of Engineering Inventions, 1(7): 68–75.
17. Recio A., Linares C., Banegas J.R., Díaz J. (2016), Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms, Environmental Research, 146: 359– 370, doi: 10.1016/j.envres.2015.12.036.
18. Singh R., Ho L.J., Tan H.L., Bell P.A. (2007), Attitudes, personal evaluations, cognitive evaluation and interpersonal attraction: On the direct, indirect and reverse-causal effects, British Journal of Social Psychology, 46: 19–42, doi: 10.1348/014466606X104417.
19. Tandel B., Macwan J.E.M. (2017), Road traffic noise exposure and hearing impairment among traffic policemen in Surat, Western India, Journal of The Institution of Engineers (India), Series A, 98: 101–105, doi: 10.1007/s40030-017-0210-6.
20. Thompson B. (2004), Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications, American Psychological Association,Washington DC.
21. Tiwari S., Babbar R., Kaur G. (2018), Performance evaluation of two ANFIS models for predicting water quality index of River Satluj (India), Advances in Civil Engineering, 2018: Article ID 8971079, doi: 10.1155/2018/8971079.
22. Yadav M., Tandel B. (2019), Exposure effect study of traffic noise on roadside shopkeepers in Surat City, Indian Journal of Environmental Protection, 39: 1038– 1045.
23. Yadav M., Tandel B. (2021), Structural equation model-based selection and strength Co-relation of variables for work performance efficiency under traffic noise exposure, Archives of Acoustics, 46(1): 155–166, doi: 10.24425/aoa.2021.136569.
24. Zaheeruddin (2006), Modelling of noise-induced annoyance: a neuro-fuzzy approach, 2006 IEEE International Conference on Industrial Technology, 2006, pp. 2686–2691, doi: 10.1109/ICIT.2006.372676.
25. Zaheeruddin, Garima (2006), A neuro-fuzzy approach for prediction of human work efficiency in noisy environment, Applied Soft Computing, 6(3): 283–294, doi: 10.1016/j.asoc.2005.02.001.
26. Zaheeruddin, Jain V.K. (2008), An expert system for predicting the effects of speech interference due to noise pollution on humans using fuzzy approach, Expert Systems with Applications, 35, 1978–1988, doi: 10.1016/j.eswa.2007.08.104.
Go to article

Authors and Affiliations

Manoj Yadav
1
ORCID: ORCID
Bhaven Tandel
1

  1. Civil Engineering Department, S. V. National Institute of Technology, Surat, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an improved approach for locating and identifying faults for UHV overhead Transmission line by using GA-ANFIS. The proposed method uses one end data to identify the fault location. The ANFIS can be viewed either as a Fuzzy system, neural network or fuzzy neural network FNN. The integration with neural technology enhances fuzzy logic system on learning capabilities are proposed to analyze the UHV system under different fault conditions. The performance variation of two controllers in finding fault location is analyzed. This paper analyses various faults under different conditions in an UHV using Matlab/simulink. The proposed method is evaluated under different fault conditions such as fault inception angle, fault resistance and fault distance. Simulation results confirm that the proposed method can be used as an efficient for accurate fault location on the transmission line.

Go to article

Authors and Affiliations

G. Banu
S. Suja
Download PDF Download RIS Download Bibtex

Abstract

The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input

parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze

pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output

relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input

parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based

approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy

system and the second approach deals with automatic evolution of the Takagi and Sugeno’s fuzzy system. It is important to note that the

performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models

were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of

a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations.

The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will

help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource

consuming.

Go to article

Authors and Affiliations

M.G.C. Patel
P. Krishna
M.B. Parappagoudar

This page uses 'cookies'. Learn more