Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the statical research tests of rod bolt made of plastic with a length of 5.5 m, which were performed in a modern laboratory test facility at the Department of Underground Mining of the University of Science and Technology. Innovative The Self-excited Acoustic System (SAS) used to measure stress changes in the bolt support was characterized. The system can be used for the non-destructive evaluation of the strain of the bolt around the excavations as well as in tunnels. The aim of the study was to compare the re-sults recorded by two different measuring systems, thanks to which it will be possible to assess the load of long bolt support by means of the non-destructive method. The speed and simplicity of measurement, access to the sensors, accuracy of measurement and reading should be kept in mind in determining the load of rock bolt support . In addition, the possibility of damage to the sensor as a re-sult of technological or natural hazards should also be taken into account. In economic conditions, the „technical - balance laws of production”, which ex-cludes the use of load sensors on each bolt must be preserved. The use of indi-vidual load sensors of rock bolt support for the boundary state, allows appro-priate protection actions of the mining crew against sudden loss of excavation stability to be taken. The paper presents two basic effects used in the ultrasonic measurement sys-tem. The first result was the existence of stable limit cycle oscillations for posi-tive feedback. This effect is called the self-excited effect. The second effect is called the elasto-acoustic effect. It means that with the change of elastic stress-es in the material bring the change of the speed of propagation of the wave. In this connection, the propagation time between measuring heads is also changed. This effect manifests itself in the change in the oscillation frequency of the self-excited system. For this reason, by measuring the frequency of self-excited oscillation, it is possible to indirectly determine the level of effort of the tested material.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Waldemar Korzeniowski
Krzysztof Zagórski
Krzysztof Lalik
Ireneusz Dominik
Janusz Kwaśniewski
Download PDF Download RIS Download Bibtex

Abstract

Monitoring the stress change of bolt and knowing the anchoring condition in a reasonable and effective way, accurately, can effectively prevent tunnel accident from breaking out. The stress of rock mass around the roadway is usually transferred to the anchor rod in the form of axial load, so it is of great significance to study the axial load of the bolt. In this paper, a full size anchoring and drawing experiment system was designed and established, innovatively, which realized the pull-out test of 2.5 m prestressed end Anchorage and the full-length Anchorage by using the new resin anchorage agent under vertical and horizontal loads. Through the application of fiber Bragg grating (FBG) sensing technology to the test of full-scale anchor rod, the axial force distribution characteristics of the end Anchorage and the full-length Anchorage anchor rod were obtained under the action of pre-tightening torque and confining rock pressure. The comparison indicates that the proportion of high stress range accounts for only 17.5% and the main bearing range is near the thread end of anchor rod, the proportion of main bearing range of end Anchorage is 83.3%, and the feasibility of FBG force-measuring anchor rod is verified in the field. The research results have certain reference value.

Go to article

Authors and Affiliations

Tuo Wang
Jucai Chang
Peng Gong
ORCID: ORCID
Wenbao Shi
Ning Li
Shixing Cheng

This page uses 'cookies'. Learn more