Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Using the Konary anticlinal structure in central Poland as an example, a geological model has been built of the Lower Jurassic reservoir horizon, and CO2 injection was simulated using 50 various locations of the injection well. The carbon dioxide storage dynamic capacity of the structure has been determined for the well locations considered and maps of CO2 storage capacity were drawn, accounting and not accounting for cap rock capillary pressure. Though crucial for preserving the tightness of cap rocks, capillary pressure is not always taken into account in CO2 injection modeling. It is an important factor in shaping the dynamic capacity and safety of carbon dioxide underground storage. When its acceptable value is exceeded, water is expelled from capillary pores of the caprock, making it permeable for gas and thus may resulting in gas leakage. Additional simulations have been performed to determine the influence of a fault adjacent to the structure on the carbon dioxide storage capacity.

The simulation of CO2 injection into the Konary structure has shown that taking capillary pressure at the summit of the structure into account resulted in reducing the dynamic capacity by about 60%. The greatest dynamic capacity of CO2 storage was obtained locating the injection well far away from the structure’s summit. A fault adjacent to the structure did not markedly increase the CO2 storage capacity. A constructed map of CO2 dynamic storage capacity may be a useful tool for the optimal location of injection wells, thus contributing to the better economy of the enterprise.

Go to article

Authors and Affiliations

Katarzyna Luboń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article aims at presenting research on the sorption of carbon dioxide on shales, which will allow to estimate the possibility of CO2 injection into gas shales. It has been established that the adsorption of carbon dioxide for a given sample of sorbent is always greater than that of methane. Moreover, carbon dioxide is the preferred gas if adsorption takes place in the presence of both gases. In this study CO2 sorption experiments were performed on high pressure setup and experimental data were fitted into the Ambrose four components models in order to calculate the total gas capacity of shales as potential CO2 reservoirs. Other data necessary for the calculation have been identified: total organic content, porosity, temperature and moisture content. It was noticed that clay minerals also have an impact on the sorption capacity as the sample with lowest TOC has the highest total clay mineral content and its sorption capacity slightly exceeds the one with higher TOC and lower clay content. There is a positive relationship between the total content of organic matter and the stored volume, and the porosity of the material and the stored volume.
Go to article

Bibliography

[1] A. Szurlej, P. Janusz, Natural gas economy in the United States and European markets. Gospodarka Surowcami Mineralnymi (Mineral Resources Management) 29 (4), 77-94 (2013). DOI: https://doi.org/10.2478/gospo-2013-0043
[2] B. Dudley, BP Statistical Review of World Energy 4 (2019).
[3] J. Siemek, M. Kaliski, S. Rychlicki, P. Janusz, S. Sikora, A. Szurlej, Wpływ shale gas na rynek gazu ziemnego w Polsce. Rynek Energii 5, 118-124 (2011).
[4] K . Król, A. Dynowski, Eksploatacja gazu ziemnego z formacji łupkowych w Polsce – nadzieje i fakty (komunikat). Bezp. Pr. Ochr. Śr. w Gór. 10 (2015).
[5] M. Iijima, T. Nagayasu, T. Kamijyo, S. Nakatani, MHI’s Energy Efficient Flue Gas CO2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA. Mitsubishi Heavy Industries Technical Review 49 (1), 37-43 (2012).
[6] R . Khosrokhavar, Mechanisms for CO2 sequestration in geological formations and enhanced gas recovery. Springer Theses (2016). DOI: https://doi.org/10.4233/uuid:a27f5c1d-5fd2-4b1e-b757-8839c0c4726c
[7] D . Liu, Y. Li, S. Yang, R.K. Agarwal, CO2 sequestration with enhanced shale gas recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (24) 1-11 (2019). DOI: https://doi.org/10.1080/15567036.2019.1587069
[8] R . Heller, M. Zoback, Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources 8, 14-24 (2014). DOI: https://doi.org/10.1016/j.juogr.2014.06.001
[9] J.A. Cecilia, C. García‐Sancho, E. Vilarrasa‐García, J. Jiménez‐Jiménez, E. Rodriguez‐Castellón, Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 18, 1085-1104 (2018). DOI: https://doi.org/10.1002/tcr.201700107
[10] O.P. Ortiz Cancino, D. Peredo Mancilla, M. Pozo, E. Pérez, D. Bessieres, Effect of Organic Matter and Thermal Maturity on Methane Adsorption Capacity on Shales from the Middle Magdalena Valley Basin in Colombia. Energy Fuels 31, 11698-11709 (2017). DOI: https://doi.org/10.1021/acs.energyfuels.7b01849
[11] S. Zhou, H. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 211, 140-148 (2018). DOI: https://doi.org/10.1016/j.fuel.2017.09.065
[12] H . Bi, Z. Jiang, J. Li, P. Li, L. Chen, Q. Pan, Y. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 35, 114-121 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.08.047
[13] M. Gasparik, P. Bertier, Y. Gensterblum, A. Ghanizadeh, B.M. Krooss, R. Littke, Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol., Special issue: Adsorption and fluid transport phenomena in gas shales and their effects on production and storage 123, 34-51 (2014). DOI: https://doi.org/10.1016/j.coal.2013.06.010
[14] X. Luo, S. Wang, Z. Wang, Z. Jing, M. Lv, Z. Zhai, T. Han, Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. Int. J. Coal Geol. 150, 210-223 (2015). DOI: https://doi.org/10.1016/j.coal.2015.09.004
[15] L . Wang, Q. Yu, The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. J. Hydrol. 542, 487-505 (2016). DOI: https://doi.org/10.1016/j.jhydrol.2016.09.018
[16] S.M. Kang, E. Fathi, R.J. Ambrose, I.Y. Akkutlu, R.F. Sigal, Carbon Dioxide Storage Capacity of Organic-Rich Shales. SPE J. 16, 842-855 (2011). DOI: https://doi.org/10.2118/134583-PA
[17] D .L. Gautier, J.K. Pitman, R.R. Charpentier, T. Cook, T.R. Klett, C.J. Schenk, Potential for Technically Recoverable Unconventional Gas and Oil Resources in the Polish-Ukrainian Foredeep. USGS Fact Sheet, 2012-3102 (2012).
[18] R . McCarthy, V. Arp, A New Wide Range Equation of State for Helium. Advances in Cryogenic Engineering 35, 1465-1475 (1990).
[19] R . Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25 (6), 1509-1596 (1996). DOI: https://doi.org/10.1063/1.555991
[20] U . Setzmann, W. Wagner, A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data 20, 1061-1155 (1991). DOI: https://doi.org/10.1063/1.555898
[21] M. Lutynski, M. A. Gonzalez Gonzalez, Characteristics of carbon dioxide sorption in coal and gas shale – The effect of particle size. Journal of Natural Gas Science and Engineering 28, 558-565. DOI: https://doi.org/10.1016/j.jngse.2015.12.037
[22] R . Aguilera, Shale gas reservoirs: Theoretical, practical and research issues. Petroleum Research 1 (1), 10-26 (2016). DOI: https://doi.org/10.1016/S2096-2495(17)30027-3
[23] H . Belyadi, E. Fathi, F. Belyadi, Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis. Gulf Professional Publishing (2016).
[24] K . Sepehrnoori, Y. Wei, Shale Gas and Tight Oil Reservoir Simulation. Elsevier (2018). DOI: https://doi.org/10.1016/ C2017-0-00263-X
[25] R .J. Ambrose, R.C Hartman, M. Diaz-Campos, I.Y. Akkutlu, C.H. Sondergeld, New Pore-scale Considerations for Shale Gas in Place Calculations. Presented at the SPE Unconventional Gas Conference, Society of Petroleum Engineers (2010). DOI: https://doi.org/10.2118/131772-MS
[26] R .J. Ambrose, R.C. Hartman, M. Diaz Campos, I.Y. Akkutlu, C.H. Sondergeld, Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. Spe Journal 17 (01), 219-229 (2012). DOI: https://doi.org/10.2118/131772-PA
[27] P. Such, Co to właściwie znaczy porowatość skał łupkowych. Nafta-Gaz LXX (7), 411-415 (2014).
Go to article

Authors and Affiliations

Patrycja Waszczuk-Zellner
1
ORCID: ORCID
Marcin Lutyński
2
ORCID: ORCID
Aleksandra Koteras
3
ORCID: ORCID

  1. LNPC Patrycja Waszczuk, Pszczyna, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The location, geological structure and characteristics of the Kamionki Anticline is presented in terms of possibility of underground CO2 storage. It is situated in the Płock Trough, in the SW part of the Płońsk Block, and represents a synsedimentary graben originated in the Early and Middle Jurassic. It has been explored by a semi-detailed reflection seismic survey and three deep boreholes (Kamionki 1, Kamionki 2 and Kamionki IG-3). Assuming that the anticline is conventionally outlined by a contour line of the top of the Lower Jurassic, its length is about 15 km, width is about 5 km and the area reaches approximately 75 km2. Geological, seismic and reservoir property data allow concluding that this structure is suitable for underground carbon dioxide storage. The primary reservoir level for underground CO2 storage is represented by Barremianmiddle Albian deposits of the Mogilno Formation with an average thickness of 170 metres, containing on the average 85% of sandstones, and showing porosity of about 20% and permeability above 100 mD up to 2000 mD. The sealing series is composed of Upper Cretaceous marls, limestones and chalk reaching the thickness of about 1000 metres. The secondary reservoir level is represented by upper Toarcian deposits of the Borucice Formation.

Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the location, geological structure and characteristics of the Wyszogród and Dzierżanowo anticlines in terms of potential underground storage of carbon dioxide. The Dzierżanowo and Wyszogród anticlines are two of the nine pre-selected structures for underground storage of carbon dioxide in Mesozoic deposits of the Płock Trough. They were detected by seismic profiles and deep boreholes. The Dzierżanowo Anticline is explored in more detail (five boreholes) than the Wyszogród Anticline (one borehole). Lower Cretaceous and Lower Jurassic aquifers have been proposed for CO2 storage in these areas. They have similar parameters: average thickness (144 mand 161 m; 140 mand 112 m, respectively), depth to the aquifer (200-300 m, lower for the Dzierżanowo Anticline), high porosity and permeability of reservoir rocks (several hundred mD and more), high capacity storage of CO2 (much higher for the Wyszogród Anticline) and large thickness of the overburden seal. In both cases, the sealing series require further, detailed investigation of their sealing properties. No faults are observed within the reservoir rocks and overburden seal in the Wyszogród Anticline. They occur in the deeper parts of the Zechstein-Mesozoic succession up to the Lower Cretaceous in the Dzierżanowo Anticline. Due to its degree of exploration and the depth to the aquifer, and similar properties of the reservoir rocks and the sealing caprock, the Dzierżanowo structure seems more favourable for the underground storage of carbon dioxide. The Wyszogród and Dzierżanowo structures may be of interest to several large CO2 emitters in the region: Vettenfall Heat Poland SA - (Siekierki and Żerań, Warsaw) and the Dalkia Łódź ZEC SA, located at a distance of up to 100 kilometres.
Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to identify thoroughly the geological structure of the Choszczno Anticline for potential CO2 storage. The paper presents the interpretation of seismic materials for a selected seismic profile reprocessed into a section of reflection coefficients characterized by increased recording resolution as compared to the wave image. Particular attention was paid to the geological complexes associated with the Jurassic reservoir formations suitable for carbon dioxide storage within the anticline. The correlation of the identified layers reflects the lithology and structure of the rock series. It allows determination of the thicknesses of the series and changes within them, and enables linking the individual layers with the lithologic units, based on geological data. The study refers to the whole Zechstein-Mesozoic succession of the Choszczno Anticline, with special emphasis on these series, in which there are potential reservoir formations for CO2 storage. The interpretation has significantly expanded the amount of data provided in standard seismic documentations. While assessing the suitability of the formations for CO2 storage, special attention should be paid to the tectonic disturbances within the Komorowo Formation, especially in the top part of the Choszczno structure. The Reed Sandstone bed is more continuous in this respect. The obtained results seem to suggest wider application of reprocessing of seismic materials into effective reflection coefficients to study the geological structure, also for other structures.

Go to article

Authors and Affiliations

Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations in the field of CO2 storage in water-bearing horizons in the area of the Upper Silesian Coal Basin were presented. It has been stated that the CO2 injection process will appear in the area of the storage site and beyond its boundaries. The determination of protective zones for underground CO2 storage and other structural elements, e.g. big tectonic zones, was proposed. These zones will constitute a safety buffer between the underground storage site and utilitarian undertakings conducted in its neighbourhood. In the work the proposal of CO2 injection intensification through controlled fracturing of formations of the future storage site was presented. This action should increase the CO2 injection effectiveness, especially in rock series characterised by average values of reservoir parameters.
Go to article

Authors and Affiliations

Eleonora Solik-Heliasz

This page uses 'cookies'. Learn more