Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

New material of Roveacrinidae from the middle–upper Cenomanian Grey Chalk Group of the Kent coast (Folkestone-Dover) is described. The fauna includes 10 taxa, including a new genus and species ( Dubrisicrinus minutus) and three new species ( Styracocrinus shakespearensis, Roveacrinus aboudaensis and Dentatocrinus serratus). The biostratigraphical significance of roveacrinid faunas is placed in a global context, and it is demonstrated that the roveacrinid zone CeR5, previously recorded only from Morocco, is approximately equivalent to the upper middle Cenomanian Acanthoceras jukesbrownei ammonite Zone, and zone CeR6 – to the Calycoceras guerangeri ammonite Zone. The new material also provides novel information on the cup structure of roveacrinids, which is reviewed and placed in a phylogenetic context.
Go to article

Authors and Affiliations

Andrew Scott Gale
1

  1. School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The uppermost Albian and lowermost Cenomanian succession at Abouda Plage, north of Agadir, in the Agadir Basin, western Morocco, is described in detail, and ammonites, microcrinoids and planktonic foraminifera are recorded and illustrated. The lower part of the Aït Lamine Formation yields ammonites indicative of the Pervinquieria (Subschloenbachia) rostrata and P. (S.) perinflata ammonite zones, and the Thalmanninella appenninica planktonic foraminiferan Zone. The base of the Cenomanian is identified at 42.2 m above the base of the Aït Lamine Formation, based on the lowest occurrence of the planktonic foraminiferan Thalmanninella globotruncanoides Sigal, 1948. Lower Cenomanian ammonites of the Graysonites adkinsi Zone enter 3 m higher in the succession. Microcrinoid zones AlR11 and AlR12 are identified in the Upper Albian, and the base of the CeR1 Zone coincides with the lowest occurrence of Cenomanian ammonites. The ammonite and microcrinoid occurrences and detailed distributions are very similar to those found in north central Texas, which, in the Cenomanian, was 5,300 km to the west. The new records suggest that the G. adkinsi Zone is equivalent to the uppermost (Lower Cenomanian) part of the Pleurohoplites briacensis Zone of the Global Stratotype Section for the base of the Cenomanian stage. An hiatus, of global extent, immediately underlies the base of the G. adkinsi Zone and is represented in the Agadir Basin by an erosion surface containing bored and encrusted hiatus concretions.
Go to article

Authors and Affiliations

Andrew Scott Gale
1 2
William James Kennedy
3 4
Maria Rose Petrizzo
5

  1. School of the Environment, Geography and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO13QL UK
  2. Earth Science Department, Natural History Museum, Cromwell Road, London SW75BD, UK
  3. Oxford University Museum of Natural History, Parks Road, Oxford, OX13PW
  4. Department of Earth Sciences, South Parks Road, OX13AN UK
  5. Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, via Mangiagalli 34, 1-20133 Milano, Italy
Download PDF Download RIS Download Bibtex

Abstract

Over 130 species are documented from the Upper Albian, Cenomanian and Upper Turonian Fahdène Formation and correlatives in Central Tunisia and northern Algeria, based on material described by Henri Coquand (1852, 1854, 1862, 1880), Léon Pervinquière (1907, 1910), Georges Dubourdieu (1953), Jacques Sornay (1955), and new collections. The material consists predominantly of limonitic nuclei, together with adults of micromorphs. There is no continuous record, and a series of faunas are recognised that can be correlated with the zonation developed in Western Europe. These are the Upper Albian Ostlingoceras puzosianum fauna, Lower Cenomanian Neostlingoceras carcitanense and Mariella (Mariella) harchaensis faunas, the upper Lower to lower Middle Cenomanian Turrilites scheuchzerianus fauna, Middle Cenomanian Calycoceras (Newboldiceras) asiaticum fauna, Upper Cenomanian Eucalycoceras pentagonum fauna, and the Upper Turonian Subprionocyclus neptuni fauna. Two new micromorph genera are described, Coquandiceras of the Mantelliceratinae and Cryptoturrilites of the Turrilitinae. Most of the taxa present have a cosmopolitan distribution, with a minority of Boreal, North American and endemic taxa.

Go to article

Authors and Affiliations

William James Kennedy
Download PDF Download RIS Download Bibtex

Abstract

The Indian Mesozoic dinosaur record is famous for documenting significant aspects of dinosaur evolution during the Triassic, Jurassic and Cretaceous periods. The Cenomanian–Turonian Nimar Sandstone, Lower Narmada valley, has produced fragmentary skeletal remains of Sauropoda indet. The Maastrichtian Lameta Formation has yielded at least 6 valid sauropod taxa and indeterminate titanosaurid remains, and at least 11 named (but likely oversplit) theropod taxa, i.e., 3 smaller-bodied species and 8 medium-to-large sized theropods. Apart from skeletal remains, Infra- and Intertrappean beds of peninsular India have yielded more than 10,000 dinosaur eggs belonging to 5 oofamilies and 15 oospecies. Most of the Indian ootaxa show distinct affinities with the Late Cretaceous ootaxa of four other continental areas – Spain, France, Argentina and Morocco. The presence of the two dominant oofamilies, Fusioolithidae and Megaloolithidae, in the Infra- and Intertrappean localities of peninsular India and three different continents (South America, Europe and Africa) further shows an ancient Gondwanan affinity and basic terrestrial association among these three landmasses. Based on the phylogenetic analysis of skeletal material, the most plausible pathway of dinosaur dispersal between India and Madagascar took place during the Late Cretaceous. The other conceivable dispersal pathway for the small animals was between India and Asia by means of the Kohistan Dras Volcanic Arc or a northeast pathway through Somalia, while the very large vertebrates, like theropod dinosaurs, may have emerged as a component of a ‘Pan Gondwanan’ model.
Go to article

Authors and Affiliations

Ashu Khosla
1
Spencer G. Lucas
2

  1. Department of Geology, Panjab University, Sector-14, Chandigarh-160014, India
  2. New Mexico Museum of Natural History, 1801 Mountain Rd. NW, Albuquerque, NM 87104, USA
Download PDF Download RIS Download Bibtex

Abstract

A novel stratigraphical scheme within the Folge Concept is described for the Cenomanian Chalk of England that is particularly suitable for investigating the regional changes in the lithofacies, diagenesis, geochemistry, and mineralogy of the sediments of the Chalk Sea leading up to the Cenomanian–Turonian Oceanic Anoxic Event. It is based on “isochronous” marker bands defined largely by calcitic macrofossil assemblages, and it avoids problems caused by the poor or non-preservation of ammonite assemblages and lateral changes in chalk lithofacies. Eight folgen are based on one, two, or more marker bands. Their sequences, lithologies and calcitic macrofossil assemblages are described from 33 exposures in the Northern Chalk Province of England. The folgen are named, in ascending order, the Belchford, Stenigot, Dalby, Bigby, Candlesby, Nettleton, Louth and Flixton, after villages in Lincolnshire and Yorkshire, England. The folgen are traced throughout the Transitional and Southern Chalk provinces of England. They are present in the Cenomanian chalk of northern Germany and northwest France. Regionally, an individual folge may display considerable vertical and lateral variation in general lithology and lithofacies whilst still maintaining their defining marker bands. The possibility of further refinement to the scheme is discussed.
Go to article

Authors and Affiliations

Christopher Vincent Jeans
1

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Download PDF Download RIS Download Bibtex

Abstract

The Upper Greensand Formation, mostly capped by the Chalk, crops out on the edges of a broad, dissected

plateau in Devon, west Dorset and south Somerset and has an almost continuous outcrop that runs from the Isle

of Purbeck to the Vale of Wardour in south Wiltshire. The Formation is well exposed in cliffs in east Devon and

the Isle of Purbeck, but is poorly exposed inland. It comprises sandstones and calcarenites with laterally and

stratigraphically variable amounts of carbonate cement, glauconite and chert. The sedimentology and palaeon-

tology indicate deposition in marginal marine-shelf environments that were at times subject to strong tidal and

wave-generated currents. The formation of the Upper Greensand successions in the region was influenced by

penecontemporaneous movements on major fault zones, some of which are sited over E-W trending Variscan

thrusts in the basement rocks and, locally, on minor faults. Comparison of the principal sedimentary breaks in

the succession with the sequence boundaries derived from world-wide sea-level curves suggests that local tec-

tonic events mask the effects of any eustatic changes in sea level. The preserved fauna is unevenly distributed,

both laterally and stratigraphically. Bivalves, gastropods and echinoids are common at some horizons but are

not age-diagnostic. Ammonites are common at a few stratigraphically narrowly defined horizons, but are rare

or absent throughout most of the succession. As a result, the age of parts of the succession is still poorly known

Go to article

Authors and Affiliations

Ramues Gallois
Hugh Owen
Download PDF Download RIS Download Bibtex

Abstract

The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian–Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio- eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian–Turonian Anoxic Event (CTAE).
Go to article

Authors and Affiliations

Christophers V. Jeans
1
David S. Wray
2
C. Terry Williams
3
David J. Bland
4
Christopher J. Wood
5

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  2. School of Science, University of Greenwich, Pembroke, Chatham Maritime, Kent, ME4 4TB, UK
  3. Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  4. 15 Pains Close, Pinner, Middlesex, HA5 3BN, UK
  5. Deceased

This page uses 'cookies'. Learn more