Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 36
items per page: 25 50 75
Sort by:
Keywords turbocharging
Download PDF Download RIS Download Bibtex

Abstract

The authors present the optimisation procedure and results, applied to the system discussed in part I. This procedure utilises a "fixed variables" method from the group of "search methods". The optimisation is related to the specific turbocharged engine STAR T3 70 for which necessary construction data and experimental measurements were available. Calculation results, however, are based mainly on the computer simulation of time dependant flows in the inlet and exhaust systems of this engine. They show that the presented method, after necessary improvements and the use of more advanced optimisation procedures, could represent an additional and attractive tool, which might be used by designers of such systems.
Go to article

Authors and Affiliations

Krzysztof Nakonieczny
Tadeusz R. Fodemski
Download PDF Download RIS Download Bibtex

Abstract

Szargut proposed the algorithm for determination of the influence of irreversibility of components of thermal process on the emission of CO2 [6]. In the presented paper, basing on Szargut's proposal, the example of analysis of influence of operational parameters of coal fired power plant on the local increase of CO2 emission is presented. The influence of operational parameters on the local exergy losses appearing in components of investigated power plant are simulating making use of the semi-empirical model of power plant.

Go to article

Authors and Affiliations

Wojciech Stanek
Michał Budnik
Download PDF Download RIS Download Bibtex

Abstract

Liquefied natural gas (LNG) is transported by the sea-ships with relatively low pressure (0.13–0.14 MPa) and very low temperature (about 100 K) in cryo-containers. Liquid phase, and the low temperature of the medium is connected with its high exergy. LNG receives this exergy during the liquefaction and is related with energy consumption in this process. When the LNG is evaporated in atmospheric regasifiers (what takes place in many on-shore terminals as well as in local regasifier stations) the cryogenic exergy is totally lost. fortunately, there are a lot of installations dedicated for exergy recovery during LNG regasification. These are mainly used for the production of electricity, but there are also rare examples of utilization of the LNG cryogenic exergy for other tasks, for example it is utilized in the fruit lyophilization process. In the paper installations based on the Brayton cycle gas turbine are investigated, in the form of systems with inlet air cooling, liquid phase injection, exhaust gas based LNG evaporation and mirror gas turbine systems. The mirror gas turbine system are found most exegetically effective, while the exhaust gas heated systems the most practical in terms of own LNG consumption.
Go to article

Bibliography

[1] IGU IGU. World LNG report. International Gas Union (IGU), Barcelona 2017.
[2] Khan M.S., Lee M.: Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy 49(2013), 146–155.
[3] Romero Gómez M., Ferreiro Garcia R., Romero Gómez J., Carbia Carril J.: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process. Renew. Sust. Energ. Rev. 38(2014), 781–795.
[4] Szargut J., Szczygieł I.: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 34(2009), 7, 827–837.
[5] Maertens J.: Design of Rankine cycles for power generation from evaporating LNG. Int. J. Refrig. 9(1986), 3, 137–143.
[6] Qiang W., Yanzhong L., Jiang W.: Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source. Appl. Therm. Eng. 24(2004), 4, 539–548.
[7] Kim C.W., Chang S.D., Ro S.T.: Analysis of the power cycle utilizing the cold energy of LNG. Int. J. Energ. Res. 19(1995), 9, 741–749.
[8] Chiu C.-H., Cords M., Kimmel Ohishi M., Kikkawa Y.: Efficient power recovery in LNG regasification plants. In: Proc. 11AIChE Spring Meeting and 7th Global Cong. on Process Safety, Chicago, March 13-17, 2011.
[9] Griepentrog H., Sackarendt P.: Vaporization of LNG with closed-cycle gas turbines. In: Proc. ASME 1976 Int. Gas Turbine and Fluids Engineering Conf., New Orleans. March 21-25, 1976. V01AT01A038.
[10] Krey G.: Utilization of the cold by LNG vaporization with closed-cycle gas turbine. ASME J. Eng. Power. 102(1980), 225–230.
[11] Arsalis A., Alexandrou A.N.: Effective Utilization of Liquefied Natural Gas for Distributed Generation. Nova Science, 2015.
[12] Zhang H., Shao S., Zhao H., Feng Z.: Thermodynamic analysis of a SCO2 partflow cycle combined with an organic Rankine cycle with liquefied natural gas as heat sink. In: Proc. ASME Turbo Expo 2014: Turbine Technical Conf. Expo., Düsseldorf, June 16–20, 2014, V03BT36A012.
[13] Subramanian R., Berger M., Tunçer B.: Energy recovery from LNG regasification for space cooling-technical and economic feasibility study for Singapore. In Proc. 2017 Asian Conf. on Energy, Power and Transportation Electrification (ACEPT), Oct. 24–26, 2017.
[14] Wang J., Dai Y., Sun Z., Ma S.: Parametric analysis of a new CCHP system utilizing liquefied natural gas (LNG). In: Proc. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow. June 14–18, 2010, 77–86.
[15] Mehrpooya M.: Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes. Energy 111(2016), 468–483.
[16] Kowalska M., Pazdzior M.: LNG as an alternative fuel for food industry. Przemysł Spozywczy 71(2017) (in Polish).
[17] Szczygieł I., Stanek W., Szargut J.: Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity. Energy 105(2016), 25–31.
[18] Bulinski Z., Szczygieł I., Krysinski T., Stanek W., Czarnowska L., Gładysz P., Kabaj A.: Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy. Energy 141(2017), 2559–2571.
[19] Szczygieł I. Bulinski Z.: Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the prof. Szargut’s impact. Energy 165(2018), 999–1008.
[20] Stanek W., Simla T., Rutczyk B., Kabaj A., Bulinski Z., Szczygieł I., Czarnowska L., Krysinski T., Gładysz P.: Thermo-ecological assessment of Stirling engine with regenerator fed with cryogenic exergy of liquid natural gas (LNG). Energy 185(2019), 1045–1053.
[21] Kaneko K., Ohtani K., Tsujikawa Y., Fujii S.: Utilization of the cryogenic exergy of LNG by a mirror gas-turbine. Appl. Energ. 79(2004), 4, 355–369.
[22] Bisio G., Tagliafico L.: On the recovery of LNG physical exergy by means of a simple cycle or a complex system. Exergy, Int. J. 2(2002), 1, 34–50.
[23] Morosuk T. Tsatsaronis G.: Comparative evaluation of LNG–based cogeneration systems using advanced exergetic analysis. Energy 36(2011), 6, 3771–3778.
[24] Morosuk T., Tsatsaronis G., Boyano A., Gantiva C.: Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation. Int. J. Energ. Environ. Eng. 3(2012), 1.
[25] Salimpour M.R., Zahedi M.A.: Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas. Heat Mass Transfer 48(2012), 8, 1309–1317.
[26] Angelino G., Invernizzi C.M.: The role of real gas Brayton cycles for the use of liquid natural gas physical exergy. Appl. Therm. Eng. 31(2011), 5, 827–833.
[27] Açıkkalp E., Aras HA., Hepbaslic A.: Advanced exergy analysis of a trigeneration system with a diesel–gas engine operating in a refrigerator plant building. Energ. Buildings 80(2014), 268–275.
[28] Cheng D.Y., Nelson A.L.C.: The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. In: Proc. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, June 3–6, 2002, GT 2002; 421–428.
[29] Szargut J.: Technical Thermodynamics. Wydawn. Politechniki Slaskiej, Gliwice 2011 (in Polish).

Go to article

Authors and Affiliations

Ireneusz Szczygieł
1
Bartłomiej Paweł Rutczyk
1

  1. Silesian University of Technology Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Abdulrahman Almutairi
Hamad Alhajeri
Abdulrahman Alenezi
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to the problems of exergetic cost determination. A brief description of theoretical fundamentals of exergetic cost determination and its application are presented. The applied method of calculations is based on the rules of determination of cumulative exergy consumption. The additional possibilities ensured by the exergetic cost analysis in comparison to the direct exergy consumption analysis are discussed. The presented methodology was applied for the analysis of influence of operational parameters on exergetic cost indices of steam power plant. Results of calculations concern one of the modern Polish power plant unit. Basing on the obtained results several conclusions have been formulated that show advantages of application of exergetic cost analyses.

Go to article

Authors and Affiliations

Michał Budnik
Wojciech Stanek
Download PDF Download RIS Download Bibtex

Abstract

The global solar radiation is the origin for all environmental processes on the earth and the majority of energy sources are derived from it. The data of solar radiation are required for the design and the study of solar application systems. The more important is the quality of the solar radiation which is defined by the maximum work can be provided by the solar radiation. This quality is measured by the exergy content of a solar radiation. In the present work, a universal pattern has been built to provide a prediction of solar exergy dependently to the geographic location. Fitting models have been developed for exergy account depending on geographic location, based on the linear, quadratic, cubic, logarithmic, exponential, power regression. The Petela model is adopted from literature for exergetic efficiency accounting of solar radiation. The global solar radiation according to ASHRAE model is expressed dependently of the cosine of zenith angle. The developed model is applied on Tunisia regions to predict exergy solar potential. The studied regions are classified regarding the exergy account, high, medium and low solar exergy locations. Results show that generally the solar radiation shows a low degree of exergy content, about 7% of difference.
Go to article

Bibliography

[1] Li L., Lin J., Wu N., Xie S., Meng C., Zheng Y., Wang X., Zhao Y.: Review and outlook on the international renewable energy development. Energ. Built Environ. 3(2020), 2, 2666–1233.
[2] Papadis E., Tsatsaronis G.: Challenges in the decarbonization of the energy sector. Energy 205(2020), 118025.
[3] Hosseini S.E., Wahid M.A.: Renewable and sustainable energy reviews hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 57(2016), 850–866.
[4] Multon B., Gaël R., Ruellan M., Ahmed H.B.: Situation énergétique mondiale à l’aube du 3ème millénaire. Perspectives offertes par les ressources renouvelables. La Revue 3EI SEE (2004), 20–33.
[5] Notton G.: Solar radiation for energy applications. In: Encyclopedia of Sustainable Technologies (A.M. Abraham, Ed.). Elsevier, 2017, 339–356.
[6] Sanan T. Mohammad, Hussain H. Al-Kayiem, Mohammed A. Aurybi, Ayad K. Khlief: Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia. Case Stud.Therm. Eng. 18, (2020), 100591.
[7] Cavaco A., Canhoto P., Pereira M.C.: Corrigendum to “Procedures for solar radiation data gathering and processing and their application to DNI assessment in southern Portugal” [Renew. Energ. 163(2021) 2208–2219]. Renew. Energ. 168(2021), 1405.
[8] Yorukoglu M., Celik A.N.: A critical review on the estimation of daily global solar radiation from sunshine duration. Energ. Convers. Manage. 47(2006), 15–16, 2441–2450.
[9] Bakirci K.: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34(2009), 4, 485–501.
[10] Çengelet Y.A. Boles M.A.: Thermodynamics. An Engineering Approach (5th Edn.). McGraw-Hill, 2005.
[11] Dincer I., Rose M.A. (Eds.): Exergy, Energy, Environment, and Sustainable Development (3rd Edn.). Elsevier, 2021, 61–89.
[12] Ziebik A.: Thermodynamical motivation of the Polish energy policy. Arch. Thermodyn. 33(2012), 4, 3–21.
[13] Chu S.X., Liu L.H.: Analysis of terrestrial solar radiation exergy. Sol. Energy 83(2009), 8, 1390–1404.
[14] Candau Y.: On the exergy of radiation. Sol. Energy 75(2003), 3, 241–247.
[15] Gueymard Ch.A.: The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76(2004), 4, 423–453.
[16] Kabelac S.: Exergy of solar radiation. Int. J. Energy Technol. Policy 3(2005), 1–2, 115–122.
[17] Joshi A.S., Dincer I., Reddy B.V: Development of new solar exergy maps. Int. J. Energ. Res. 33(2009), 8, 709–718.
[18] Alta D., Ertekin C., Evrendilek F.: Quantifying spatio-temporal dynamics of solar radiation exergy over Turkey. Renew. Energ. 35(2010), 12, 2821–2828.
[19] Jiménez-Muñoz J.C., Sobrino J.A., Mattar C.: Recent trends in solar exergy and net radiation at global scale. Ecol. Model. 228(2012), C, 59–65.
[20] Hepbasli A., Alsuhaibani Z.: Estimating and comparing the exergetic solar radiation values of various climate regions for solar energy utilization. Energ. Source. Part A 36(2014) 7, 764–773.
[21] Uçkan I.: Exergy analysis of solar radiation based on long term for Van city. J. Polytech. 20(2017), 3, 579–584.
[22] Petela R.: Energy of heat radiation. J. Heat Transfer 86(1964), 187–192.
[23] Spanner D.C.: Introduction to Thermodynamics. Academic Press, London, 1964.
[24] Jeter S.M.: Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energ. 26(1981), 231–236.
[25] Arslanoglu N.: Empirical modeling of solar radiation exergy for Turkey. Appl. Therm. Eng. 108(2016), 1033–1040.
[26] Jamil B., Bellos E.: Development of empirical models for estimation of global solar radiation exergy in India. J. Clean. Prod. 207(2019), 1–16.
[27] Khorasanizadeh H., Sepehrnia M.: Solar exergy evaluation and empirical model establishment; case study: Iran. Heliyon 6(2020), 12, 2405–8440, e05638.
[28] Lounissi D., Bouaziz N.: Exergetic analysis of an absorption/compression refrigeration unit based on R124/DMAC mixture for solar cooling. Int. J. Hydrog. Energ. 42(2017), 13, 8940–8947.
[29] Simpson A.P.: Decision making in energy: Advancing technical, environmental, and economic perspectives. PhD thesis, Stanford Univ. 2010, 28168075. https://www.proquest.com/openview/6ee7749bfe128753d88ba805856d03b8/1?pqorigsite= gscholar&cbl=18750&diss=y (accessed 10 May 2010).
[30] Brand Correa L.I.: Exergy and useful work analysis as a tool for improved energy policy making: The case of the Colombian energy sector. MSc. thesis, Univ. of Edinburgh, 2014, https://www.doi.org/10.13140/RG.2.1.4523.6089.
[31] Sciubba E.: Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exerg. Int. J. 1(2001), 2, 68–84.
[32] Abd Elbar A.R., Yousef M.S., Hassan H.: Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. Clean. Prod. 233(2019), 665–680.
[33] Luminosu I., Fara L.: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30(2005), 5, 731– 747.
[34] Sala Lizarraga J.M.P., Picallo-Perez A.: Exergy Analysis and Thermoeconomics of Buildings. Butterworth-Heinemann, 2020.
[35] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[36] Ghritlahre H.K.: An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Arch. Thermodyn. 42(2021), 3, 115–139.
[37] Sobhnamayan F., SarhaddF. i, Alavi M.A., Farahat S., Yazdanpanahi J.: Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renew. Energ. 68(2014), 356–365.
[38] Hossain S., Chowdhur H., Chowdhury T., Ahamed J.U., Saidur R., Sait S.M., Rosen M.A.: Energy, exergy and sustainability analyses of Bangladesh’s power generation sector. Energ. Rep. 6(2020), 868–878.
[39] Chowdhury H., Chowdhury T., Chowdhury P., Islam M., Saidur R., Sait S.M.: Integrating sustainability analysis with sectoral exergy analysis: A case study of rural residential sector of Bangladesh, Energ. Buildings 202(2019), 109397.
[40] Cornelissen R.L.: Thermodynamics and sustainable development. PhD thesis, Univ. of Twente, 1997.
[41] Maruf M.H., Rabbani M., Ashique R.H., Islam M.T., Nipun M.K., Haq M.A.U., Al Mansur, Shihavuddin A.S.M.: Exergy based evaluation of power plants for sustainability and economic performance identification. Case Stud. Therm. Eng. 28(2021), 101393.
[42] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(2008), 128–137.
[43] Zisopoulos F.K., Rossier-Miranda F.J., van der Goot A.J., Boom R.M.: The use of exergetic indicators in the food industry – A review. Crit. Rev. Food Sci. Nutrit. 57(2017), 197–211.
[44] Hepbasli A.: A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sust. Energ. Rev. 12(2008), 593–661.
[45] Sudhakar K., Tulika Srivastava: Energy and exergy analysis of 36 W solar photovoltaic module. Int. J. Amb. Energ. 35(2014), 1, 51–57.
[46] Press W.H.: Theoretical maximum for energy from direct and diffuse sunlight. Nature 264(1976), 734–735.
[47] Landsberg P.T., Tonge G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A-Math. Gen. 12(1979), 4, 551–562.
[48] Parrott J.E.: Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 21(1978), 3, 227–229.
[49] Parrott J.E.: A letter. Sol. Energy 22(1979), 6, 572–573.
[50] Kabelac S.: A new look at the maximum conversion efficiency of blackbody radiation. Sol. Energy 46(1991), 4, 231–236.
[51] Millan M.I., Hernandez F., Martin E.: Available solar exergy in an absorption cooling process. Sol. Energy 56(1996), 6, 505–511.
[52] Würfel P.: Thermodynamic limitations to solar energy conversion. Physica E 14(2002), 1–2, 18–26.
[53] Bejan A.: Advanced Engineering Thermodynamics. Wiley, New York, 2006.
[54] Petela R.: Exergy of undiluted thermal radiation. Sol. Energy 74(2003), 6, 469–488.
[55] ASHRAE. Handbook of Fundamentals. American Society of Heating, Refrigeration, and Air Conditioning Engineers, New York, 1979.
[56] Solar Position Calculator. https://gml.noaa.gov/grad/solcalc/azel.html (accessed 10 May 2021).
[57] Khorasanizadeh H., Mohammadi K., Mostafaeipour A.: Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran. Energ. Convers. Manage. 78(2014), 805–814.
[58] Despotovic M., Nedic V., Despotovic D., Cvetanovic S.: Review and statistical analysis of different global solar radiation sunshine models. Renew. Sust. Energ. Rev.52(2015), 1869–1880.
Go to article

Authors and Affiliations

Khaoula Daghsen
1 2
Dorra Lounissi
2
Nahla Bouaziz
2

  1. University of Monastir, National Engineering School of Monastir, Rue Ibn El Jazzar, Monastir 5000, Rue Ibn Jazzar, Monastir 5035, Tunisia
  2. University of Tunis El Manar, National Engineering School of Tunis, Energy and Environment Laboratory LR21ES09, ENIT. BP 37, Le Belvedere 1002
Download PDF Download RIS Download Bibtex

Abstract

Based on the exergetic sustainability indicators of polymer electrolyte membrane (PEM) fuel cell, this paper studied the effects of irreversibility of thermodynamics on some exergetic sustainability indicators of PEM fuel cell under changing operating temperature, operating pressure and current density. Some conclusions are drawn by analyzing the curves. As the operating temperature increases, the negative impact of PEM fuel cell on various parameters due to irreversibility decreases; As the operating pressure increases, the negative impact of PEM fuel cell on various parameters due to irreversibility decreases; On the other hand, with the increase of current density, the negative impact of the PEM fuel cell on various parameters due to irreversibility increases.
Go to article

Bibliography

[1] Cengel Y., Bole M.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York 1994.
[2] Dincer I.: Technical, environmental and exergetic aspects of hydrogen energy systems. Int. J. Hydrogen Energ. 27(2002), 3, 265–285.
[3] Kazim A.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2004), 11/12, 1949–1961.
[4] Mert S.O., Dincer I., Ozcelik Z.: Exergoeconomic analysis of a vehicular PEM fuel cell system. J. Power Sources 165(2007), 1, 244–252.
[5] Barelli L., Bidini G., Gallorini F. et al.: An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell. Appl. Energ. 88(2011), 12, 4334– 4342.
[6] Midilli A., Dincer I.: Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. Int. J. Hydrogen Energ. 34(2009), 9, 3858–3872.
[7] Ay M., Midilli A., Dincer I.: Exergetic performance analysis of a PEM fuel cell. Int. J. Energ. Res. 30(2006), 5, 307–321.
[8] Hanapi S., Tijani A.S., Rahim A.H.A., Mohamed W.A.N.W.: Comparison of a prototype PEM fuel cell powertrain power demand and hydrogen consumption based on inertia dynamometer and on-road tests. In: Proc. Int. Conf. on Alternative Energy in Developing Countries and Emerging Economies, Selangor 2015.
[9] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energ. Policy 36(2008), 1, 128– 137.
[10] Midilli A., Inac S., Ozsaban M.: Exergetic sustainability indicators for a high pressure hydrogen production and storage system. Int. J. Hydrogen Energ. 42(2017), 33, 21379–21391.
[11] Tayfun Özgür, Yakaryilmaz A.C.: Thermodynamic analysis of a proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 43(2018), 38, 18007–18013.
[12] Balli O., Sohret Y., Karakoc H.T.: The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. Int. J. Hydrogen Energ. 43(2018), 23, 10848–10858.
[13] Ghritlahre H. K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[14] Carmo M., Fritz D.L., J. Mergel et al.: A comprehensive review on PEM electrolysis. Int. J. Hydrogen Energ. 38(2013), 12, 4901–4934.
[15] Li C., Liu Y., Xu B., Ma Z.: Finite time thermodynamic optimization of an irreversible proton exchange membrane fuel cell for vehicle use. Processes 7(2019), 7, 419
[16] Obara S., Tanno I., Kito S. et al.: Exergy analysis of the woody biomass Stirling engine and PEM-FC combined system with exhaust heat reforming. Int. J. Hydrogen Energ. 33(2008), 9, 2289–2299.
[17] Ayoub Kazim.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2003), 11–12, 1949–1961.
[18] Taner T.: Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 143(2018), 15, 284–294.
[19] El-Emam R.S., Dincer I., Naterer G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrogen Energ. 37(2012), 2, 1689–1697.
[20] Granovskii M., Dincer I., Rosen M.A.: Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energ. 31(2006), 3, 337–352.
Go to article

Authors and Affiliations

Bing Xu
1
Yan Chen
2
Zheshu Ma
1

  1. Nanjing Forestry University Coll Automobile & Traff Engn, Nanjing 210037, Jiangsu, China
  2. The 723th Institute, China Shipbuilding Industry Corporation, Yangzhou, 225001, China
Download PDF Download RIS Download Bibtex

Abstract

Efficiency and electrical power output of combined cycle power plants vary according to the ambient conditions. The amount of these variations greatly affects electricity production, fuel consumption, and plant incomes. Obviously, many world countries have a wide range of climatic conditions, which impact the performance of power plants. In this paper, a thermodynamic analysis of an operating power plant located in Jordan is performed with actual operating data acquired from the power plant control unit. The analysis is performed by using first and second laws of thermodynamics. Energy and exergy efficiencies of each component of the power plant system are calculated and the effect of ambient temperature on the components performance is studied. The effects of gas turbine pressure ratio, gas turbine inlet temperature, load and ambient conditions on the combined cycle efficiency, power outputs and exergy destruction are investigated. Energy and exergy efficiencies of the combined cycle power plant are found as 45.29%, and 42.73% respectively when the ambient temperature is 34 ◦C. Furthermore, it is found that the combustion chamber has the largest exergy destruction rate among the system components. The results showed that 73% of the total exergy destruction occurs in the combustion chamber when the ambient temperature is 34 ◦C. Moreover, the results show that the second major exergy loss is in HRSC. The results show that the energy and exergy efficiency of the combined cycle power plant decreases as the ambient temperature increases. According to the calculation results, improvement and modification suggestions are presented.

Go to article

Authors and Affiliations

Khaled Bataineh
Bara A. Khaleel
Download PDF Download RIS Download Bibtex

Abstract

The new efficient method of modeling and thermodynamic analysis of power engineering systems has been presented. With its help a comparison of different structures and investigation of the influence of a particular constituent process onto the whole system efficiency is possible. The shaft work or the exergy is the main thermodynamic quantity taken into account in analyses, and the appropriate dimensionless modeling parameter has been introduced.

Go to article

Authors and Affiliations

Jarosław Kozaczka
Pavel Kolat
Download PDF Download RIS Download Bibtex

Abstract

The article presents an experimental-theoretical analysis of fluidised-bed drying of poppy seeds directed on minimisation of energy. The analysis was performed for a complete drying node incorporating a heat exchanger and a fan. Two complementary factors were used in the exergetic evaluation: exergy efficiency and unit consumption of exergy. An analysis of drying in stationary bed was carried out for comparison purposes. Results of the exergetic analysis can become a basis for innovative works focused on decreasing energy consumption of a technological node being analysed, e.g. by the use of recirculation of fluidising-drying medium.

Go to article

Authors and Affiliations

Joanna Skoneczna-Łuczków
Włodzimierz Ciesielczyk
Download PDF Download RIS Download Bibtex

Abstract

In this work, a new dual-evaporator CO2transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

Go to article

Authors and Affiliations

Ezzaalouni Yathreb Abdellaoui
Lakdar Kairouani Kairouani
Download PDF Download RIS Download Bibtex

Abstract

Basing on the first and second law of thermodynamics the fundamental trends in the Polish energy policy are analysed, including the aspects of environmental protection. The thermodynamical improvement of real processes (reduction of exergy losses) is the main way leading to an improvement of the effectivity of energy consumption. If the exergy loss is economically not justified, we have to do with an error from the viewpoint of the second law analysis. The paper contains a thermodynamical analysis of the ratio of final and primary energy, as well as the analysis of the thermo-ecological cost and index of sustainable development concerning primary energy. Analyses of thermo-ecological costs concerning electricity and centralized heat production have been also carried out. The effect of increasing the share of high-efficiency cogeneration has been analyzed, too. Attention has been paid to an improved efficiency of the transmission and distribution of electricity, which is of special importance from the viewpoint of the second law analysis. The improvement of the energy effectivity in industry was analyzed on the example of physical recuperation, being of special importance from the point of view of exergy analysis.
Go to article

Authors and Affiliations

Andrzej Ziębik
Download PDF Download RIS Download Bibtex

Abstract

The authors present an optirrusanon method, based on the thermodynamic consideration and applied to the inlet and exhaust systems of turbocharged engine. The goal function in this method is defined as a sum of exergy irreversible losses - occurring in the whole flow path. The decision variables, optimisation parameters and, also, the constraint conditions in the discussed method are defined and determined. The validation results of specially written and unique programmes, used for flow simulations in the analysed systems, are also presented. The optimisation results, based on the discussed method and related to a specific turbocharged engine are discussed in part II.
Go to article

Authors and Affiliations

Krzysztof Nakonieczny
Tadeusz R. Fodemski
Download PDF Download RIS Download Bibtex

Abstract

Solar energy is a unique source of renewable energy due to its availability and the unlimited quantity. It has long attracted the attention of scientists who are conducting theoretical and experimental research into its use. Solar energy plays an increasingly important role in the context of energy conservation. With the rising cost of conventional energy sources and limited access to natural resources, interest in the use of renewable energy sources is increasing. In this context, environmental protection is another factor favoring the development of technologies based on renewable energy sources. With economic development, the significance of new environmentally friendly technologies is increasing. One of the most popular ways for the average household to utilize renewable energy sources is by installing photovoltaic panels. Such an installation allows the use of solar energy to generate electricity, which contributes to reducing energy costs and protecting the environment. The article presents the results of an analysis of the exergy efficiency of prosumer photovoltaic systems found in the area of northern Poland. The analysis presented was based on actual operating parameters over a certain time interval. A key aspect is the analysis of exergy, which is not distributed in renewable energy sources (RES) systems.
Go to article

Authors and Affiliations

Waldemar Kuczyński
1
Anna Borowska
1

  1. Technical University of Koszalin, Faculty of Mechanical Engineering, Department of Energy, Racławicka 15-17, 75-620 Koszalin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Improvement in the exegetic efficiency of a solar air heater (SAH) can be done by enhancing the rate of heat transfer. In this work, the exergetic efficiency optimization of an artificially roughened solar air heater having an inverted L-shape rib has been performed. The numerical analysis of the exergetic performance of the solar air heater was carried out at a constant heat flux of 1000 W/m2. The study was conducted to investigate the effect of different relative roughness pitch (7.14–17.86) on the exergy losses, under the Reynolds number range of 3000 to 18 000. The roughness parameter of this geometry has been optimized and found to be among functional operating parameters like average solar intensity and temperature rise across the collector. The optimized value of relative roughness pitch is 17.86 at the isolation of 1000 W/m 2, and the parameter of temperature rise ranges from 0.005 to 0.04.
Go to article

Authors and Affiliations

Manmohan Chaudhari
1
Sohan Lal Sharma
2
Ajoy Debbarma
2

  1. Maya Institute of Technology and Management, Selaqui, Dehradun, Uttarakhand-248007, India
  2. National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India
Download PDF Download RIS Download Bibtex

Abstract

The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90°C, for a supercritical power block of 900 MWelfuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.
Go to article

Authors and Affiliations

Paweł Ziółkowski
Janusz Badur
Tomasz Kowalczyk
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented is an idea of organic Rankine cycle (ORC) operating with supercritical parameters and so called dry fluids. Discussed is one of the methods of improving the effectiveness of operation of supercritical cycle by application of internal regeneration of heat through the use of additional heat exchanger. The main objective of internal regenerator is to recover heat from the vapour leaving the turbine and its transfer to the liquid phase of working fluid after the circulation pump. In effect of application of the regenerative heat exchanger it is possible to obtain improved effectiveness of operation of the power plant, however, only in the case when the ORC plant is supplied from the so called sealed heat source. In the present paper presented is the discussion of heat sources and on the base of the case study of two heat sources, namely the rate of heat of thermal oil from the boiler and the rate of heat of hot air from the cooler of the clinkier from the cement production line having the same initial temperature of 260 oC, presented is the influence of the heat source on the justification of application of internal regeneration. In the paper presented are the calculations for the supercritical ORC power plant with R365mfc as a working fluid, accomplished has been exergy changes and exergy efficiency analysis with the view to select the most appropriate parameters of operation of the power plant for given parameters of the heat source.
Go to article

Authors and Affiliations

Aleksandra Borsukiewicz-Gozdur
Download PDF Download RIS Download Bibtex

Abstract

Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5°C with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40°C, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

Go to article

Authors and Affiliations

Robert Sekret
Anna Nitkiewicz
Download PDF Download RIS Download Bibtex

Abstract

In order to analyze the cumulative exergy consumption of an integrated oxy-fuel combustion power plant the method of balance equations was applied based on the principle that the cumulative exergy consumption charging the products of this process equals the sum of cumulative exergy consumption charging the substrates. The set of balance equations of the cumulative exergy consumption bases on the ‘input-output method’ of the direct energy consumption. In the structure of the balance we distinguished main products (e.g. electricity), by-products (e.g. nitrogen) and external supplies (fuels). In the balance model of cumulative exergy consumption it has been assumed that the cumulative exergy consumption charging the supplies from outside is a quantity known a priori resulting from the analysis of cumulative exergy consumption concerning the economy of the whole country. The byproducts are charged by the cumulative exergy consumption resulting from the principle of a replaced process. The cumulative exergy consumption of the main products is the final quantity.

Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz
Download PDF Download RIS Download Bibtex

Abstract

Paper deals with theoretical analysis of possible efficiency increase of compression refrigeration cycles by means of application of a twophase ejector. Application of the two phase ejector in subcritical refrigeration system as a booster compressor is discussed in the paper. Results of exergy analysis of the system operating with various working fluids for various operating conditions have been shown. Analysis showed possible exergy efficiency increase of refrigeration compression cycle.

Go to article

Authors and Affiliations

Jarosław Karwacki
Adam Dudar
Dariusz Butrymowicz
Kamil Śmierciew
Download PDF Download RIS Download Bibtex

Abstract

Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2- Due to the limited adiabatic temperature of combustion some part of CO2must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the 'input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz
Download PDF Download RIS Download Bibtex

Abstract

The Bay of Cartagena (Colombia) is a site of commercial interest owing to its privileged location for maritime opera-tions; however, the discharge of wastewaters from industrial activities and domestic sewage are affecting the water quality, and consequently, the biodiversity of coastal ecosystems. The polycyclic aromatic hydrocarbons (PAHs) are found in sedi-ments and water of main ports, causing severe damage to the ecosystem. Thus, alternatives for the treatment of the Bay of Cartagena’s water and sediments are needed. In this paper, we performed the exergetic analysis of removing PAHs from water and sediments in the Bay of Cartagena using an adsorption-based treatment process with chitosan microbeads and magnetic nanoparticles (CM-TiO2/Fe3O4). The outcomes of exergy of utilities, irreversibilities and exergy losses were calculated us-ing process data and exergy of substances. The Aspen plus V10 software provided the physical exergies, while chemical exergies were gathered from the literature. Overall exergy efficiency of 0.3% was determined for the seawater and sediment treatment facility. A sensitivity analysis was performed to identify the impact and viability of different design alternatives.
Go to article

Bibliography

BOBBO S., FEDELE L., CURCIO M., BET A., DE CARLI M., EMMI G., POLETTO F., TARABOTTI A., MENDRINOS D., MEZZASALMA G., BERNARDI A. 2019. Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies. Vol. 12(18), 3538. DOI 10.3390/en12183538.
Caracol Radio 2019. Ordenan medidas para frenar contaminación en La Bahía de Cartagena [Measures are needed to stop pollution in the Bay of Cartagena] [online]. [Access 03/04/2020]. Available at: https://caracol.com.co/emisora/2019/09/02/cartagena/1567458652_644521.html.
El Tiempo 2018. La Bahía de Cartagena, un coctel tóxico [Cartagena Bay, a toxic cocktail] [online]. [Access 03.05.2020]. Available at: https://www.eltiempo.com/vida/medio-ambiente/la-bahia-de-cartagena-un-coctel-toxico-segun-estudio-298222
FLORES-CHAPARRO C.E., RODRIGUEZ-HERNANDEZ M.C., CHAZA¬RO-RUIZ L.F., ALFARO-DE LA TORRE M., HUERTA-DIAZ M.A, RANGEL-MENDEZ J.R. 2018. Chitosan-macroalgae biocompo¬sites as potential adsorbents of water- soluble hydrocarbons: Organic matter and ionic strength effects. Journal of Cleaner Production. Vol. 197 p. 633–642. DOI 10.1016/j.jclepro. 2018.06.200.
GARCÍA-PADILLA Á., MORENO-SADER K., REALPE A., ACEVEDO-MORANTES M., SOARES J.B.P. 2020. Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy. Vol. 17, 100292. DOI 10.1016/j.scp.2020.100292.
GU F., GENG J., LI M., CHANG J., CUI Y. 2019. Synthesis of chitosan-ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega. Vol. 4 No. 25 p. 21421–21430. DOI 10.1021/acsomega.9b03128.
HUANG Y., FULTON A.N., KELLER A.A. 2016. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment. Vol. 571 p. 1029–1036. DOI 10.1016/j.scitotenv.2016.07.093.
HUMEL S., SCHRITTER J, SUMETZBERGER-HASINGER M., OTTNER F., MAYER P., LOIBNER A.P. 2020. Atmospheric carbonation reduces bioaccessibility of PAHs in industrially contaminated soil. Journal of Hazardous Materials. Vol. 383, 121092. DOI 10.1016/j.jhazmat.2019.121092.
JOHNSON-RESTREPO B., OLIVERO-VERBEL J., LU S., GUETTE-FERNÁNDEZ J., BALDIRIS-AVILA R., O’BYRNE-HOYOS I., ALDOUS K.M., ADDINK R., KANNAN K. 2008. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environment International. Vol. 151 p. 452–459. DOI 10.1016/j.envpol.2007.04.011.
MARTINEZ D., PUERTA A., MESTRE R., PERALTA-RUIZ Y., GONZALEZ-DELGADO A. 2020. Exergy-based evaluation of crude palm oil production in North-Colombia. Australian Journal of Basic and Applied Sciences. Vol. 10(18) p. 82–88.
MERAMO-HURTADO S., ALARCÓN-SUESCA C., GONZÁLEZ-DEL¬GADO A.D. 2019a. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. Journal of Cleaner Production. Vol. I248, 119285. DOI 10.1016/j.jclepro.2019.119285.
MERAMO-HURTADO S., MORENO-SADER K., GONZÁLEZ-DELGADO Á.D. 2019b. Computer-aided simulation and exergy analysis of TiO2 nanoparticles production via green chemistry. PeerJ. Vol. 7, e8113 p. 1–19. DOI 10.7717/peerj.8113
MERAMO-HURTADO S.I., MORENO-SADER K.A., GONZALEZ-DELGADO A.D. 2020. Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. ACS Omega. Vol. 5. No. 21 p. 12126–12135. DOI 10.1021/acsomega.0c00394.
MERAMO-HURTADO S., PATINO-RUIZ D., COGOLLO-HERRERA K., HERRERA A., GONZALEZ-DELGADO A. 2018. Physico-chemical characterization of superficial water and sediments from Cartagena Bay. Contemporary Engineering Sciences. Vol. 11. No.32 p. 1571–1578. DOI 10.12988/ces.2018.8273.
MORENO-SADER K., MERAMO-HURTADO S.I., GONZÁLEZ-DELGADO A.D. 2019. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renewable and Sustainable Energy Reviews. Vol. 112 p. 42–57. DOI 10.1016/j.rser.2019.05.044.
OLIVA A.L., QUINTAS P.Y., RONDA A.C., MARCOVECCHIO J.E., ARIAS A.H. 2020. First evidence of polycyclic aromatic hydrocarbons in sediments from a marine protected area within Argentinean continental shelf. Marine Pollution Bulletin. Vol. 158, 111385. DOI 10.1016/j.marpolbul.2020.111385.
PITAKPOOLSIL W., HUNSOM M. 2014. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: Parameter optimization and process kinetics. Journal of Environmental Management. Vol. 133 p. 284–292. DOI 10.1016/j.jenvman.2013.12.019.
QIAO Y., LYU G., SONG CH., LIANG X., ZHANG H., DONG D. 2019. Optimization of programmed temperature vaporization injection for determination of polycyclic aromatic hydro¬carbons from diesel combustion process. Energies. 12(24), 4791. DOI 10.3390/en12244791.
RESTREPO J.D. 2018. Arrastrando La Montaña Hacia El Mar: Hacia dónde van nuestros océanos [Dragging the mountain to the sea: Where our oceans go]. Cartagena. Agenda del Mar Comunicaciones. ISBN 978-958-57860-8-0 pp. 96.
SAINI J., GARG V.K., GUPTA R.K. 2020. Green synthesized SiO2 @ OPW nanocomposites for enhanced lead (II) removal from water. Arabian Journal of Chemistry. Vol. 13. No. 1 p. 2496–2507. DOI 10.1016/j.arabjc.2018.06.003.
TOUS HERAZO G., MAYO MANCEBO G., RIVERO HERNÁNDEZ J., LLAMAS CONTERAS H. 2015. Evaluación temporal de los niveles de los hidrocarburos aromáticos policíclicos en los sedimentos de La Bahía de Cartagena [Temporal evaluation of the levels of polycyclic aromatic hydrocarbons in the sediments of Cartagena Bay]. Derrotero. Revista de la Ciencia y la Investigación. Vol. 9. No. 9 p. 7–12.

Go to article

Authors and Affiliations

Maileth Cantillo-Figueroa
1
ORCID: ORCID
Kariana A. Moreno-Sader
1
ORCID: ORCID
Angel D. Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Ave. del Consulado #Calle 30 No. 48 152, Cartagena, Bolívar, Colombia
Keywords COP Exergy R134a R290 R600
Download PDF Download RIS Download Bibtex

Abstract

Synthetic refrigerants are being phased out gradually in accordance with international environmental protection protocols because of global warming and ozone layer depletion. Adopting R290/R600 refrigerant, an environmentally friendly refrigerant, to replace R134a, a high global warming potential refrigerant, provides one of the solutions. In this study, exergy analysis of R134a and TiO2 suspended with lubricant and R290/R600 with a composition of 60% R290 and 40% R600 (60:40) was investigated in vapour compression system (VCRS) using R290/ R600 in TiO2 nanomixture lubricant and compared with R134a and R290/ R600 in pure lubricant. At the inlets and outlets, the main components of the VCRS are connected to temperature and pressure sensors to measure the inlet and outlet temperatures and pressures. The results obtained were used to analyses the exergy losses at various VCRS components (compressor, condenser, evaporator, expansion valve) were investigated to determine the refrigerator’s total exergy destruction (E·xdest.Total) and efficiency (ηex). The E·xdest.Total of R290/R600 in pure lubricant and R290/R600 TiO2 nanomixture lubricant was reduced by 26.9% and 42.3%, respectively, and system ηex increased by 27.7% and 38.9% respectively when compared to R134a in the system. Hence, TiO2 suspended with R290/R600 is potential a substitute for R134a.
Go to article

Authors and Affiliations

D.M. Madyira
1
ORCID: ORCID
T.O. Babarinde
2
ORCID: ORCID

  1. University of Johannesburg, Department of Mechanical Engineering Science, Johannesburg, South Africa
  2. University of Johannesburg, Department of Mechanical Engineering Science, Johannesburg, South Africa; University of Johannesburg, Process, Energy and Environmental Technology Station (PEETS), Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to some problems connected with last modification of EU directive on energy efficiency, viz.: free choice of the measure concerning the improvement of energy efficiency, i.e. final or primary energy consumption, corresponding energy savings or energy-consumption index; however without cumulative consumption or cumulative savings of primary energy. In EU directive it has been stressed the importance of measurements systems (reliable measurement information); but has not been recommended any advanced validation of measurements results, nor energy auditing or algorithms of calculating the energy savings due to improvement of energy efficiency concerning large industrial plants. Evaluation of complex buildings should be realized by means of the system method (input-output analysis). The separate problem is devoted to application of thermo-ecological approach in the analysis of complete results of improving the energy efficiency. Human activity is connected with the depletion of nonrenewable resources, including primary energy, due to not only production of consumer goods but also the necessity of compensating the unfavourable effects of harmful emissions from energy-technological processes. Therefore the index of energy-ecological efficiency has been proposed as the most competent evaluation of improvement energy efficiency of production processes and systems.

Go to article

Authors and Affiliations

Andrzej Ziębik
Wojciech Stanek

This page uses 'cookies'. Learn more