Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

This paper presents the classification of musical instruments using Mel Frequency Cepstral Coefficients (MFCC) and Higher Order Spectral features. MFCC, cepstral, temporal, spectral, and timbral features have been widely used in the task of musical instrument classification. As music sound signal is generated using non-linear dynamics, non-linearity and non-Gaussianity of the musical instruments are important features which have not been considered in the past. In this paper, hybridisation of MFCC and Higher Order Spectral (HOS) based features have been used in the task of musical instrument classification. HOS-based features have been used to provide instrument specific information such as non-Gaussianity and non-linearity of the musical instruments. The extracted features have been presented to Counter Propagation Neural Network (CPNN) to identify the instruments and their family. For experimentation, isolated sounds of 19 musical instruments have been used from McGill University Master Sample (MUMS) sound database. The proposed features show the significant improvement in the classification accuracy of the system.

Przejdź do artykułu

Autorzy i Afiliacje

Daulappa Guranna Bhalke
C. B. Rama Rao
Dattatraya Bormane

Abstrakt

Aurivillius Bi5-xHoxTi3FeO15 (BHTFO) multiferroic ceramics with different holmium doping contents were synthesized by conventional solid state reaction. The effect of holmium doping on the microstructure, structural and dielectric behaviors of BHTFO ceramics were investigated in details. Microstructure and crystalline structure studies of ceramics were carried out at room temperature while dielectric properties were investigated in a wide range of temperature (T = 25ºC-550ºC) and frequency (20Hz-1MHz).

Przejdź do artykułu

Autorzy i Afiliacje

M. Tomaszewska
J. Dzik
ORCID: ORCID
B. Wodecka-Duś
ORCID: ORCID
T. Pikula
ORCID: ORCID
M. Adamczyk-Habrajska
ORCID: ORCID
D. Szalbot
ORCID: ORCID
D. Chocyk

Abstrakt

The goal of this study is to assess the application of the Hardening soil model in predicting the deformation of retaining walls of excavations in 2D and 3D finite element analysis at the Ho Chi Minh Metro project. Designed as the deepest underground station in the first metro line built in Ho Chi Minh City (HCMC), Opera House station is located in an area with a dense building zone and close to historical buildings. A summary of the input soil properties is provided using data from site investigations, in-situ tests, and laboratory tests. By numerical simulation using the Hardening soil model, the parameters of the soil stiffness modulus value are verified based on the Standard Penetration Test (SPT), and Pressuremeter test (PMT). The obtained results of the numerical analysis by 2D and 3D finite element methods, and field observations indicate that applying the Hardening soil model with soil stiffness modulus obtained in situ tests gives reasonable results on the displacement of the retaining wall at the final phase. The relationship between the SPT value and the stiffness modulus of HCMC sand is a function of depth. This correlation is obtained through the comparison of wall deformation between the simulation and monitoring at the construction site. The results of the difference between 2D and 3D finite element analysis also are discussed in this study.
Przejdź do artykułu

Autorzy i Afiliacje

Luc Manh Bui
1
ORCID: ORCID
Li Wu
1
ORCID: ORCID
Yao Cheng
1
ORCID: ORCID
Dao Jun Dong
1
ORCID: ORCID

  1. Faculty of Engineering, China University of Geosciences (Wuhan), No. 388 Lumo Road, Wuhan 430074, Hubei, China

Abstrakt

An efficient operation of a Ho:YLF laser pumped by a Tm-doped fibre laser is reported. The research in a continuous-wave (CW) operation was done for two crystals of the same 0.5 at.%Ho dopant concentration and with different lengths (3×3×30 mm3 and 3×3×50 mm3). For an output coupling transmission of 20% and a crystal length of 50 mm, the maximum CWoutput power of 38.9 W for 81.4 W of incident pump power, corresponding to the slope efficiency of 52.3% and optical-to-optical conversion efficiency of 47.8% (determined with respect to the incident pump power) was achieved. The highest opti- cal-to-optical conversion efficiency of 70.2% with respect to the absorbed pump power was obtained. The influence of a heat-sink cooling water temperature on theCWlaser performance was studied. For a Q-switched operation the pulse repe- tition frequency (PRF) was changed from 2 to 10 kHz. The maximum average output power of 34.1 W at the PRF of 10 kHz was obtained for a 50 mm holmium crystal length. For 2 kHz PRF and 71.9 W of incident pump power, pulse energies of 13.7 mJ with a 21 ns FWHM pulse width corresponding to 652 kW peak power were recorded.

Przejdź do artykułu

Autorzy i Afiliacje

J. Kwiatkowski

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji