Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Signal attenuation caused by the propagation path between the compromising emanation source (the location of secured IT equipment) and the location of the antenna of the potential infiltrating system has a direct influence on the electromagnetic safety of IT equipment. The article presents original analytical relationships necessary to estimate the attenuation values introduced by the propagation path of the potential compromising emanation signal, which correspond to the most probable locations of IT equipment in relation to the location of the potential infiltrating system. The author of the article analyzes various location scenarios for IT equipment – a potential source of compromising emanations – with a potential infiltrating system located either within or outside the boundaries of a building, in which said IT equipment is located. The aforementioned scenarios are characterized by the lowest propagation path attenuation of potential compromising emanation generated by the secured IT equipment and provide for location masking of the potential infiltrating system. Example design of protective solutions for IT equipment elaborated by article author in the form of a shielding enclosure is presented in the article as well.

Go to article

Authors and Affiliations

Leszek Nowosielski
Download PDF Download RIS Download Bibtex

Abstract

The existence of inrush current poses a significant problem during the start-up process within three-phase voltage-source rectifiers. To address this problem, this study proposes a strategy to suppress the inrush current effectively based on the virtual-resistor- control method, while preventing the increase in cost of the system and complexity of the algorithm. First, a mathematical model is established based on the dq coordinate frame, and the primary cause of the inrush current is analyzed. Then, the design process of the virtual-resistor-control method is detailed. Finally, the accuracy and effectiveness of the proposed method are verified by simulations and experiments. The results show that the inrush current can be more than two times the rated current before the addition of the virtual resistor. The start-up process can be realized without the inrush current after the addition of the virtual resistor, it does not need to increase hardware costs, there is no secondary inrush current, and the sensitivity of the parameters and the complexity of control are low.

Go to article

Authors and Affiliations

Kaizhong He
Hongsheng Su
Download PDF Download RIS Download Bibtex

Abstract

Power big data contains a lot of information related to equipment fault. The analysis and processing of power big data can realize fault diagnosis. This study mainly analyzed the application of association rules in power big data processing. Firstly, the association rules and the Apriori algorithm were introduced. Then, aiming at the shortage of the Apriori algorithm, an IM-Apriori algorithm was designed, and a simulation experiment was carried out. The results showed that the IM-Apriori algorithm had a significant advantage over the Apriori algorithm in the running time. When the number of transactions was 100 000, the running of the IM-Apriori algorithm was 38.42% faster than that of the Apriori algorithm. The IM-Apriori algorithm was little affected by the value of supportmin. Compared with the Extreme Learning Machine (ELM), the IM-Apriori algorithm had better accuracy. The experimental results show the effectiveness of the IM-Apriori algorithm in fault diagnosis, and it can be further promoted and applied in power grid equipment.

Go to article

Authors and Affiliations

Jianguo Qian
Bingquan Zhu
Ying Li
Zhengchai Shi
Download PDF Download RIS Download Bibtex

Abstract

The publication reflects the current situation concerning the possibilities of using augmented reality (AR) technology in the field of production technologies with the main intention of creating a tool to increase production efficiency. It is a set of individual steps that respond in a targeted manner to the possible need for assisted service intervention on a specific device. The publication chronologically describes the procedure required for the preparation and processing of a CAD model. For this preparatory process, the PTC software package is used which meets the requirements for each of the individual operations. The first step is the routine preparation of CAD models and assemblies. These are prepared based on real models located on the device, and their shape and dimensions correlate with the dimensions of the model on the device. The second phase is the creation and timing of the disassembly sequence. This will provide the model with complete vector data, which is then paired with the CAD models in AR. This phase is one of the most important. It determines the location of the model concerning its relative position on the device, provides information on the relocation of parts of the model after the sequence is started, and essentially serves as a template for the interactive part of the sequence. The last two phases are used to connect CAD models with vector data, determine their position for the position mark, and prepare the user interface displayed on the output device. The result of this procedure is a functional disassembly sequence, used for assisted service intervention of a worker in the spindle drive of the Emco Mill 55 device.
Go to article

Authors and Affiliations

Justyna Trojanowska
1
Jakub Kašcak
2
ORCID: ORCID
Jozef Husár
2
ORCID: ORCID
Lucia Knapcíková
3
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, Piotrowo Street 3, 61-138 Poznan, Poland
  2. Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Department of Computer Aided Manufacturing Technology, Šturova 31, 080 01 Prešov, Slovak Republic
  3. Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Department of Industrial Engineering and Informatics, Bayerova 1, 080 01 Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Austenitic Fe-Ni-Cr alloys are commonly used for the production of castings intended for high-temperature applications. One area where Fe-Ni-Cr castings are widely used is the equipment for heat treatment furnaces. Despite the good heat resistance properties of the materials used for the castings, they tend to develop cracks and deformations over time due to cyclic temperature changes experienced under high temperature operating conditions. In the case of carburizing furnace equipment, thermal stresses induced by the temperature gradient in each operating cycle on rapidly cooled elements have a significant influence on the progressive fatigue changes. In the carburized subsurface zone, also the different thermal expansion of the matrix and non-metallic precipitates plays a significant role in stress distribution. This article presents the results of analyses of thermal stresses in the surface and subsurface layer of carburized alloy during cooling, taking into account the simultaneous effect of both mentioned stress sources. The basis for the stress analyzes were the temperature distribution in the cross-section of the cooled element as a function cooling time, determined numerically using FEM. These distributions were taken as the thermal load of the element. The study presents the results of analyses on the influence of carbide concentration increase on stress distribution changes caused by the temperature gradient. The simultaneous consideration of both thermal stress sources, i.e. temperature gradient and different thermal expansions of phases, allowed for obtaining qualitatively closer results than analyzing the stress sources independently
Go to article

Bibliography

[1] Lai, G.Y. (2007). High-Temperature Corrosion and Materials Applications. ASM International.
[2] Davis, J.R. (1997). Industrial applications of heat-resistant materials. In Heat Resistant Materials. 67-85.
[3] Piekarski, B. (2012). Creep-resistant castings used in heat treatment furnaces. Szczecin: West Pomeranian University of Technology Publishing House. (in Polish).
[4] Lo, K.H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering R: Reports. 65(4-6), 39-104.
[5] Carreon, M., Ramos Azpeitia, M. O., Hernandez Rivera, J. L., Bedolla Jacuinde, A., Garcia Lopez, C. J., Ruiz Ochoa, J. A., & Gonzalez Castillo, A. C. (2023). Development of a novel heat-resistant austenitic cast steel with an improved thermal fatigue resistance. International Journal of Metalcasting. 17(2), 1114-1127. DOI: 10.1007/s40962-022-00838-1.
[6] Drotlew, A., Garbiak, M. & Piekarski, B. (2012). Cast steels for creep-resistant parts used in heat-treatment plants. Archives of Foundry Engineering, 12(4), 31-38. DOI: 10.2478/v10266-012-0103-0.
[7] Lekakh, S. N., Buchely, M., Li, M., & Godlewski, L. (2023). Effect of Cr and Ni concentrations on resilience of cast Nb-alloyed heat resistant austenitic steels at extreme high temperatures. Materials Science and Engineering: A. 873, 145027. DOI: doi.org/10.1016/j.msea.2023.145027.
[8] Piekarski, B. & Drotlew A. (2019). Cast grates used in heat treatment furnaces. Archives of Foundry Engineering, 19(3), 49-54. DOI: 10.24425/afe.2019.127138.
[9] Nandwana, D., Bhupendra, N. K., Bhargava, T., Nandwana, K., & Jawale, G. (2010). Design, Finite Element analysis and optimization of HRC trays used in heat treatment process. Proceedings of the World Congress on Engineering WCE 2010, (II), (pp. 1149-1154).
[10] Ul-Hamid, A., Tawancy, H. M., Mohammed, A. R. I., & Abbas, N. M. (2006). Failure analysis of furnace tubes exposed to excessive temperature. Engineering Failure Analysis. 13(6), 1005-1021. DOI: 10.1016/j.engfailanal. 2005.04.003.
[11] Piekarski, B. (2010). Damage of heat-resistant castings in a carburizing furnace. Engineering Failure Analysis. 17(1), 143-149. DOI: 10.1016/j.engfailanal.2009.04.011.
[12] Reihani, A., Razavi, S. A., Abbasi, E., & Etemadi, A. R. (2013). Failure analysis of welded radiant tubes made of cast heat-resisting steel. Journal of failure Analysis and Prevention. 13(6), 658-665. DOI: 10.1007/s11668-013-9741-y.
[13] Bochnakowski, W., Szyller, Ł. & Osetek, M. (2019). Damage characterization of belt conveyor made of the 330Nb alloy after service in a carburizing atmosphere in a continuous heat treatment furnace. Engineering Failure Analysis. 103, 173-183. DOI: 10.1016/j.engfailanal.2019.04.058.
[14] González-Ciordia, B., Fernández, B., Artola, G., Muro, M., Sanz, Á., & López de Lacalle, L. N. (2019). Failure-analysis based redesign of furnace conveyor system components: a case study. Metals. 9(8), 816, 1-12. DOI: 10.3390/met9080816.
[15] Srikanth, S., Saravanan, P., Khalkho, B., & Banerjee, P. (2021). Failure analysis of inconel 601 radiant tubes in continuous annealing furnace of hot dip galvanizing line. Journal of Failure Analysis and Preven-tion, 21. 747-758. DOI: 10.1007/s11668-021-01148-0.
[16] Gutowski, P. (1989). Analysis of cracking causes in grates used in carburising furnaces. Szczecin: Diss., Politechnika Szczecińska. (in Polish).
[17] Schnaas, A., Grabke, H.J. (1978). High-Temperature Corrosion and Creep of Ni-Cr-Fe Alloys in Carburizing and Oxidizing Environments. Oxidation of Metals. 12(5), 387-404. https://doi.org/10.1007/BF00612086.
[18] Zatorski, Z. & Tuleja, J. (2017). Numerical modelling of micro-stresses in carbonised austenitic cast steel under rapid cooling conditions. Archives of Metallurgy and Materials. 62(2), 635-641. DOI: 10.1515/amm-2017-0093.
[19] Bajwoluk, A. & Gutowski, P. (2019). Stress and crack propagation in the surface layer of carburized stable austenitic alloys during cooling. Materials at High Temperatures. 36(1), 9-18. DOI: 10.1080/09603409.2018144 8528.
[20] Bajwoluk, A. & Gutowski, P. (2017). The effect of cooling agent on stress and deformation of charge-loaded cast pallets. Archives of Foundry Engineering. 17(4), 13-18. DOI: 10.1515/afe-2017-0123.
[21] Bajwoluk, A. & Gutowski, P. (2018). Design options to decrease the thermal stresses in cast accessories for heat and chemical treatment furnaces. Archives of Foundry Engineering. 18(4), 125-130. DOI:10.24425/afe.2018. 125181.
[22] Bajwoluk, A. & Gutowski, P. (2019). Thermal stresses in the accessories of heat treatment furnaces vs cooling kinetics. Archives of Foundry Engineering. 19(3), 88-93. DOI: 10.24425/afe.2019.127146.
[23] Bajwoluk, A. & Gutowski, P. (2021). Effect of thermal nodes reduction in wall connections of the charge-handling furnace grates on thermal stresses. Archives of Foundry Engineering. 21(3), 53-58. DOI: 10.24425/afe.2021.138665.
[24] Tuleja, J., Kędzierska, K. & Sowa, M. (2022). The use of the finite element method to locate the places of damage occurrence in elements of technological equipment in carburizing furnaces. Procedia Computer Science. 207, 3931-3937. DOI: 10.1016/j.procs.2022.09.455.
[25] Bajwoluk, A. & Gutowski, P. (2023). Analysis of thermal stresses synergy in surface layer of carburised creep-resistant casts during rapid cooling processes. Materials at High Temperatures. 40(1), 64-76. DOI: 10.1080/09603409.2022. 2162684.
[26] Zienkiewicz, O.C. (1971). Finite element method in engineering science. London: McGraw-Hill.
[27] Midas NFX 2017: Analysis Manual, 2017.
[28] Standard PN-EN 10295: 2004. Heat resistant steel castings.
[29] Church, B. C., Sanders, T. H., Speyer, R. F., & Cochran, J. K. (2007). Thermal expansion matching and oxidation resistance of Fe–Ni–Cr interconnect alloys. Material Science and Engineering A. 452-453. https://doi.org/10.1016/j.msea.2006.10.149.
[30] Guo, X., Liu, Z., Li, L., Cheng, J., Su, H., & Zhang, L. (2022). Revealing the long-term oxidation and carburization mechanism of 310S SS and Alloy 800H exposed to supercritical carbon dioxide. Materials Chararacterization. 183, 111603. DOI: 10.1016/j.matchar.2021.111603.
[31] Shaffer, P.T.B.(1964). Plenum Press Handbooks Of High-Temperature Materials, Springer Science + Business Media.
[32] Schutze, M. (1997). Protective oxide scales and their breakdown. Ed. by D. R. Holmes, Institute of Corrosion, John Wiley & Sons.
[33] Huntz, A.M. (1995). Stresses in NiO, Cr2O3, and A2O3, oxide, Mater Science and Engineering A. 201 (1-2), 211-228. https://doi.org/10.1007/BF02648633.
[34] Richard, C. S., Béranger, G., & Decomps, F. (1995). Study of Cr203 coatings Part I: Microstructures and modulus. Journal of Thermal Spray Technology. 4(4), 342-346. https://doi.org/10.1007/BF02648633.
[35] Pang, X., Gao, K., & Volinsky, A. A. (2007). Microstructure and mechanical properties of chromium oxide coatings. Journal of Materials Research. 22(12), 3531-3537.
[36] Ji, A. L., Wang, W., Song, G. H., Wang, Q. M., Sun, C., & Wen, L. S. (2004). Microstructures and mechanical properties of chromium oxide films by arc ion plating. Materials Letters. 58(14), 1993-1998. https://doi.org/10.1016/j.matlet. 2003.12.029.
[37] Barshilia, H.C. & Rajam, K.S. (2008). Growth and characterization of chromium oxide coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering. Applied Surface Science. 255(9), 2925-2931. https://doi.org/10.1016/j.apsusc.2008.08.057.
[38] Gaillac, R., Pullumbi, P., & Coudert, F. X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter. 28(27), 275201.
Go to article

Authors and Affiliations

A. Bajwoluk
1
ORCID: ORCID
P. Gutowski
1
ORCID: ORCID

  1. Mechanical Engineering Faculty, West Pomeranian University of Technology, Szczecin Al. Piastów 19, 70-310 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

As one of the key techniques in the fully mechanized mining process, equipment selection and matching has a great effect on security, production and efficiency. The selection and matching of fully mechanized mining equipment in thin coal seam are restricted by many factors. In fully mechanized mining (FMM) faced in thin coal seams (TCS), to counter the problems existing in equipment selection, such as many the parameters concerned and low automation, an expert system (ES) of equipment selection for fully mechanized mining longwall face was established. A database for the equipment selection and matching expert system in thin coal seam, fully mechanized mining face has been established. Meanwhile, a decision-making software matching the ES was developed. Based on several real world examples, the reliability and technical risks of the results from the ES was discussed. Compared with the field applications, the shearer selection from the ES is reliable. However, some small deviations existed in the hydraulic support and scraper conveyor selection. Then, the ES was further improved. As a result, equipment selection in fully mechanized mining longwall face called 4301 in the Liangshuijing coal mine was carried out by the improved ES. Equipment selection results of the interface in the improved ES is consistent with the design proposal of the 4301 FMM working face. The reliability of the improved ES can meet the requirements of the engineering. It promotes the intelligent and efficient mining of coal resources in China.

Go to article

Authors and Affiliations

Chen Wang
ORCID: ORCID
Jie Chen
Cheng Liu
Chengyu Jiang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a lot of attention has been paid to deep learning methods in the context of vision-based construction site safety systems. However, there is still more to be done to establish the relationship between supervised construction workers and their essential personal protective equipment, like hard hats. A deep learning method combining object detection, head center localization, and simple rule-based reasoning is proposed in this article. In tests, this solution surpassed the previous methods based on the relative bounding box position of different instances and direct detection of hard hat wearers and non-wearers. Achieving MS COCO style overall AP of 67.5% compared to 66.4% and 66.3% achieved by the approaches mentioned above, with class-specific AP for hard hat non-wearers of 64.1% compared to 63.0% and 60.3%. The results show that using deep learning methods with a humanly interpretable rule-based algorithm is better suited for detecting hard hat non-wearers.
Go to article

Authors and Affiliations

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID
Kamil Książek
1
Jarosław A. Miszczak
1
Mirosław J. Skibniewski
1 2

  1. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 44-100 Gliwice, Poland
  2. A. James Clark School of Engineering, University of Maryland, College Park, MD 20742-3021, USA
Download PDF Download RIS Download Bibtex

Abstract

This study uses statistical quality control (SQC) and overall equipment effectiveness (OEE) to examine quality at a porcelain production firm. The study is motivated by the most frequently broken machines in 2019, is the Jigger 01 machine. This paper aims to evaluate the machine’s effectiveness using the OEE method. The OEE determines the scope of the problem to be solved using the SQC method. The average OEE value in 2019 was 70%. Based on the SQC method, the product defect produced is still under control. However, the average defect is still above the company’s tolerance limit of 10%. Consequently, this study offers enhancements utilizing the Failure Mode Effect Analysis (FMEA) technique. The results indicate that human resources and machines caused defective products. This paper contributes to providing several improvements that the company can apply to maximize its quality control analysis. After implementing the improvement, the OEE value increases to 74%.
Go to article

Authors and Affiliations

Filscha Nurprihatin
Glisina Dwinoor Rembulan
Johanes Fernandes Andry
Sarah Immanuella
Ivana Tita Bella Widiwati
Download PDF Download RIS Download Bibtex

Abstract

The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process.
Go to article

Bibliography

[1] Lai, G.Y. (2007). High-Temperature Corrosion and Materials Applications. ASM International.
[2] Davis, J.R. (Ed.). (1997). Industrial Applications of HeatResistant Materials. In Davis, J.R. (Eds.), ASM Specialty Handbook - Heat-Resistant Materials (pp. 67-85). ASM International.
[3] Piekarski, B. (2012). Creep-resistant castings used in heat treatment furnaces. Szczecin: West Pomeranian University of Technology Publishing House. (in Polish).
[4] Ul-Hamid et al. (2006). Failure analysis of furnace tubes exposed to excessive temperature. Engineering Failure Analysis. 13(6), 1005-1021. DOI: 10.1016/j.engfailanal.2005.04.003.
[5] Reihani, A., Razavi, S.A., Abbasi, E. et al. (2013). Failure Analysis of welded radiant tubes made of cast heat-resisting steel. Journal of failure Analysis and Prevention. 13, 658–665. DOI: https://doi.org/10.1007/s11668-013-9741-y.
[6] Piekarski, B. (2010). Damage of heat-resistant castings in a carburizing furnace. Engineering Failure Analysis. 17(1), 143-149. DOI: 10.1016/j.engfailanal.2009.04.011.
[7] Nandwana, D., et al. (2010). Design, Finite Element analysis and optimization of HRC trays used in heat treatment process. In World Congress on Engineering 2010, June 30 - July 2, 2010 (pp. 1149-1154). London, U.K.: Newswood Limited.
[8] Sandeep, K., Ajit, K. & Mahesh, N.S. (2012). Improving productivity in a heat treatment shop for piston Pins. SASTECH Journal. 11(2), 38-46.
[9] Standard PN-EN 10295: 2004. Heat resistant steel castings.
[10] Bajwoluk, A. & Gutowski, P. (2019). Thermal stresses in the accessories of heat treatment furnaces vs cooling kinetics. Archives of Foundry Engineering. 19(3), 88-93, DOI: 10.24425/afe.2019.127146.
Go to article

Authors and Affiliations

A. Bajwoluk
1
ORCID: ORCID
P. Gutowski
1
ORCID: ORCID

  1. Mechanical Engineering Faculty, West Pomeranian University of Technology, Szczecin, Al. Piastów 19, 70-310 Szczecin, Polska
Download PDF Download RIS Download Bibtex

Abstract

Many contemporary technical elements (such as railings, light switches, power sockets, security cameras, etc.) have a very different aesthetic from the historical interiors to which they are added. Their placement in historical architectural interiors raises the question of their visibility and their power to disrupt the visual unity of an indoor space. Using logical argumentation and knowledge from the psychology of perception, a phenomenon from the discipline of architecture — the phenomenon of the perception of these elements — was analysed. Logical analysis showed that these additions do not disturb the harmony of the interior and that it does not lose its historical character. The conclusion is that their presence in the field of vision is not a radical interference with the monument.
Go to article

Authors and Affiliations

Tomasz Omieciński
1
ORCID: ORCID

  1. Lodz University of Technology Faculty of Civil Engineering, Architecture and Environmental Engineering
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted in a company that produces palm oil-based products such as cooking oil and margarine. The study aimed to encounter defects in packaging pouches. This study integrated the overall equipment effectiveness (OEE) with the six sigma DMAIC method. The OEE was performed to measure the efficiency of the machine. Three factors were measured in OEE: availability, performance, and quality. These factors were calculated and compared to the OEE world-class value. Then, the Multiple Linear Regression was performed using SPSS to determine the correlation between measurement variables toward the OEE value. Lastly, the six sigma method was implemented through the DMAIC approach to find the solution and improve the packaging quality. Supposing the recommendations are implemented, the OEE is expected to increase from 82% to 85%, with availability ratio, performance ratio, and quality ratio at, 99%, 86%, and 99.8%, respectively.
Go to article

Authors and Affiliations

Filscha Nurprihatin
Glisina Dwinoor Rembulan
Johanes Fernandes Andry
Maulidina Lubis
Ivana Tita Bella WIDIWATI
Ali VAEZI

This page uses 'cookies'. Learn more