Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The exothermic insulating riser played an important role in the solidification process of metal liquid for the improvement of casting quality. This paper focused on the use of organosilicon slag to replace part of the aluminum powder as an exothermic agent for the riser, to reduce production costs and turn waste into treasure. The experiments firstly studied the effect of organosilicon slag content on the combustion temperature and holding time and determined the components of the riser exothermic agent and organosilicon slag. On this basis, the effects of the content of Na3AlF6 flux and alkali phenolic resin binder on the combustion heating time and strength properties of the riser were studied. And the ratio of mixed oxidants was determined by single-factor orthogonal experiments to optimize the addition of three oxidants, Fe3O4, MnO2, and KNO3. Finally, the performance of the riser prepared after optimization was compared with that of the riser prepared with general aluminum powder. The results showed that with the mixture of 21% organosilicon slag and 14% aluminum powder as the exothermic agent, the highest combustion temperature of the prepared exothermic insulating riser was 1451℃ and the holding time was 193 s; the optimal content of Na3AlF6 flux was 4%, and the best addition alkali phenolic resin binder was 12%; the optimized mixing ratio of three oxidants was 12% for Fe3O4, 6% for MnO2, and 6% for KNO3. Under the optimized ratio, the maximum combustion temperature of the homemade riser was 52℃ and the heat preservation time was 14% longer compared with the conventional exothermic insulating riser with 25-35% aluminum powder.
Go to article

Authors and Affiliations

Jijun Lu
1
ORCID: ORCID
Jiangbing Qian
1
ORCID: ORCID
Lei Yang
1
ORCID: ORCID
Huafang Wang
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China
Download PDF Download RIS Download Bibtex

Bibliography

[1] Lu, J.J., Qian, J.B., Yang, L. & Wang, H.F. (2023). Preparation and performance optimization of organosilicon slag exothermic insulating riser. Archives of Foundry Engineering. 23(1),75-82. DOI: 10.24425/afe.2023.144283.
[2] Krajewski, P.K., Zovko-Brodarac, Z. & Krajewski, W.K. (2013). Heat exchange in the system mould - Riser - Ambient. Part I: Heat exchange coefficient from mould external surface. Archives of Metallurgy and Materials. 58(3), 833-835. DOI: 10.2478/amm-2013-0081.
[3] Vaskova, I., Conev, M. & Hrubovakova, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131–136. DOI: 10.1515/afe-2017-0064.
[4] Sowa, L., Skrzypczak, T. & Kwiatoń, P. (2022). Numerical evaluation of the impact of riser geometry on the shrinkage defects formation in the solidifying casting. Archives of Metallurgy and Materials. 67(1), 181-187. DOI: 10.24425/amm.2022.137487.
[5] Lu, J.J., He, W., Tan, S.M., Qian, J.B. & Lu, X. (2021). Chinese Patent NO. 202110970771.3. Beijing. China National Intellectual Property Administration.
[6] Wang, E.Z., He, J.Y., Shen, J. & Yan, F.Y. (1993). Permeability of washings for vacuum evapouration-pattern casting. Special Casting & Nonferrous Alloys. 6, 1-3. DOI:10.15980/j.tzzz.1993.06.001. (in Chinese).
[7] Yu, J., Wang, D.D., Mao, L., Li, C.Y., Lu, S.D., Xu, Q.B. & Wang, W.Q. (2008). Application of LYH-3 dextrin binder in exothermic and insulating riser. Foundry Technology. 7, 873-876. (in Chinese).
[8] Zhao, X., Wang, Z.X., Zhang, W.Q., et al. (2022). The Efficacy of magnetization in enhancing flocculation and sedimentation of clay particles. Journal of Irrigation and Drainage. 41(3), 114-124. DOI: 10.13522/j.cnki.ggps.2021300. (in Chinese).
[9] Cai, Y.,Shi, B.,Liu, Z.B.,Tang, C.S. & Wang, B.J. (2005). Experimental study on effect of aggregate size on strength of filled soils. Chinese Journal of Geotechnical Engineering. 12, 1482-1486. (in Chinese).
[10] Kang, M., Wu, Y.L., Wang, W.Q. & Dai, X.Q. (1998). Effects of thermo - rheologic properties of thermo-plastic phenol resin on properties of resin-coated sand. Modern Cast Iron. 2, 11-13. (in Chinese).
[11] Dai, B.Y. (1996). Research on rheological property of phenol-formaldehyde resin for hot process. China Foundry Machinery & Technology. 5, 16-19. (in Chinese).
[12] Tang, L.L., Li, N.N. & Wu, P.X. (2008). High performance phenolic resin and its application technology. Beijing: Chemical Industry Press.
[13] Tong, L.L., Zhou, J.X., Yin, Y.J. & Li, Y.C. (2020). Effects of grain size and resin content on strength of furan resin sand. Special Casting& Nonferrous Alloys. 40(2), 139-142. DOI:10.15980/j.tzzz.2020.02.005. (in Chinese).
[14] Wang, W., Li, X.H., Gao, P.H., Zeng, S.C., Chen, B.Y., Yang, Z., Guo, Y.C. & Li, J.P. (2021). Study on optimization of gas evolution in resin sand moulds. Hot Working Technology. 50(15), 48-50. DOI:10.14158/j.cnki.1001-3814.20192900. (in Chinese).
[15] Li, C.S. (2012). Influence of properties and state of raw sand on properties of self-setting resin sand. Modern Cast Iron. 32(5), 63-68. (in Chinese).
[16] Zhu, Y.L. & Cai, Z.S. (1996). Analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 12, 37-38. (in Chinese).
[17] You, M. & Zheng, X.L. (1999). Theoretical analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 2, 42-44. (in Chinese).
Go to article

Authors and Affiliations

Jljun Lu
1
ORCID: ORCID
Zhuofan Zhong
1
ORCID: ORCID
Hu Yongluan
ORCID: ORCID
Di Wu
1
ORCID: ORCID
Huafang Wang
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China

This page uses 'cookies'. Learn more